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Introduction
The fi rst experimental realization of a Bose-Einstein Condensate (BEC) 
occurred in 1995, launching an intense study of ultra-cold atoms which con-
tinues to this day1,2,3,4tinues to this day1,2,3,4tinues to this day . BEC is a system in which a macroscopic number of 
bosons are put into a common ground state as a result of Bose-Einstein sta-
tistics. Producing a BEC in a laboratory allows for the study of fundamental 
issues in quantum mechanics and opens new doors for future investigations.

Aside from the fundamental physics explored using a BEC, the experi-
mental techniques involved in forming a BEC have drawn considerable 
interest. One reason is because these techniques are used for other quantum 
optics experiments. Variations and improvements of the original techniques 
of Anderson et al. have been used to form BECs and related forms of degen-
erate gases4,5. To produce a BEC in an atomic gas, the atoms are typically 
cooled to a temperature on the order of a μK and are spatially confi ned to 
maintain a required number density6 of about 1014 cm-3. This is required so 
that the average thermal de Broglie waves of the individual particles over-
lap. This spatial confi nement also keeps the particles away from the warm 
walls of the vacuum chambers in which BECs are formed, which helps them 
achieve equilibrium faster. A technique known as magnetic trapping is 
employed to achieve this spatial confi nement. In addition to spatial confi ne-
ment, magnetic traps play an important role in the cooling of particles in 
processes known as laser cooling and evaporative cooling7,8,9,10,11processes known as laser cooling and evaporative cooling7,8,9,10,11processes known as laser cooling and evaporative cooling .

An atom with magnetic moment μBμBμ  and a B and a B z-component spin number of z-component spin number of z mzmzm
has a potential energy E(m(m( zmzm ) = gmzμBμBμ B where B is the applied magnetic fi eld and B is the applied magnetic fi eld and B
g is the Lande g is the Lande g g-factor. If g-factor. If g gmzgmzgm  is positive, then the atom is said to be in a weak-z is positive, then the atom is said to be in a weak-z

fi eld-seeking state. For this state, a magnetic fi eld with a local minimum con-
fi nes the atom in the potential well. The potential near the local minimum can 
be approximated as a quadratic well. An atom with a strong-fi eld-seeking state 
where gmzgmzgm  is negative cannot be trapped using a static magnetic fi eld because no z is negative cannot be trapped using a static magnetic fi eld because no z

local maximum of magnetic fi eld can exist according to Maxwell’s equations12.

Magnetic traps can be divided into two categories. Quadrupole traps are 
those whose local minimum of the interaction potential, E(mz), is zero. 
The other type is one with a local minimum of E(mz) being nonzero (Ioffe-
Pritchard-type trap)8. It should be noted that a quadrupole trap alone cannot 
be used to form a quantum degenerate gas due to Majorana spin fl ips that 
occur at the zero of the trap. Nevertheless, it serves as a backbone to some 
of the traps that are used for formation of degenerate gases. In this paper, we 
present a detailed numerical study of two magnetic traps that fall into the 
former category: anti-Helmholtz coils and a U-chip. While literature dealing 
with the properties of these traps exists, published studies dealing purely with 
the set of fi eld equations describing the traps do not. In addition, the role that 
the geometric aspect of the trap and the electric current play, via a scaling rule, 
in determining their properties have not been addressed. New atom trapping 
experiments must calculate the necessary fi eld equations for the trap being 
designed. Indeed, the numerical model presented in this paper was developed 
when the ultra-cold atoms lab led by Joseph Thywissen at the University of 
Toronto began its atom trapping experiment in May of 2003. This study pro-
vides a recipe for magnetic traps, detailing a set of key fi eld expressions that 
can be quickly referred to when designing a magnetic trap.

Anti-Helmholtz coils

FIELD EQUATIONS

Anti-Helmholtz coils were used in the fi rst generation of BEC experiments. 
Migdall et al. outlines the key features of anti-Helmholtz coils in an experi-
mental setup13. In their experiment, two coaxial loops having a radius of 2.7 
cm, a separation distance of about 3.7 cm, and a current of 12.58 A were 
used13. Although the features of their particular trap are outlined in their 
paper, the properties of coils with arbitrary current, radii, and separation 

Numerical study of quadrupole 
magnetic traps for neutral atoms: 
anti-Helmholtz coils and a U-chip

Hyun Youk
Department of Physics, University of Toronto. Currently at Johns Hopkins University (hyun.youk@jhu.edu)

Received 1 November 2004; Accepted 8 December 2004

Abstract
Anti-Helmholtz coils and micro-fabricated chips are used for magnetically trapping neutral atoms in forming Bose-Einstein condensates and Fermi degen-
erate gases. Although they are widely used, literature dealing with a detailed numerical study of the magnetic fi elds involved in these traps is incomplete. 
Analytical and numerical investigations were carried out to study the physical properties of the magnetic fi elds produced by the anti-Helmholtz coils and a 
U-chip. The roles played by electric current and geometric aspects of these magnetic traps are emphasized through numerical modelling.

original research



14 Canadian Undergraduate Physics Journal VOLUME III    ISSUE 2 JANUARY 2005

Figure 4 Parametrization for the xz-plane shown for a single coil of radius a, 
carrying current I.

distance are not discussed. In the present study, these properties are derived 
for coils with arbitrary parameters.

Typically, one or more pairs of anti-Helmholtz coils are wrapped around 
the vacuum cell in which atoms are trapped. The size of the anti-Helmholtz 
coils varies depending on the experimental setup. We assume the coil is 
made up of a single wire but in an actual experiment, a coil consists of many 
wires wound around a cylindrical spool. However, our model is still appli-
cable to such an experimental setting via the superposition principle.

A calculation of the magnetic fi eld Balong z(z) along the z-axis (the axis of z-axis (the axis of z
symmetry) of a pair of anti-Helmholtz coils, as shown in Figure 1, yields

(1)

where I is the current fl owing through the two coils, I is the current fl owing through the two coils, I a is the radius and a is the radius and a d
is the separation distance. The current in each coil is fl owing in opposite 
directions with respect to one another. Introducing the following propor-
tionality factors

(2)

Equation (1) can be written as

(3)

α and β are geometric properties of the coils, while λ is the uniform circular λ is the uniform circular λ
current density. Since the fi eld is zero at the origin, this is the location of 
the minimum of E(mz), and is thus the only place where the atoms can be 
trapped along the axis of symmetry. By fi rst-order linear approximation for 
z? a and a and a z? d, the fi eld along the z-axis isz-axis isz

(4)

Numerical analysis indicates that the linear approximation deviates by 
less than 2% if α < 0.2 with β is in the interval [0.4, 1.0]. These values of α
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Figure 1 A pair of anti-Helmholtz coils.

Figure 2 Morphism of the error curve associated with Equation (4) at three 
values of β: 0.42, 0.88, 1.0.

Figure 3 Family of error curves associated with Equation (4). Each curve cor-
responds to a different value of β.
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and β are of interest for atom-trapping. As β increases from 0.4 to approxi-
mately 0.74, the error curve transitions into a tighter quadratic shape. As β
is increased above 0.74, the trough of the fi eld-well fl attens out and transi-
tions into a quartic shape. Figure 2 shows this morphism in more detail, 
while Figure 3 shows the superposition of the the family of error curves for 
various values of β.

Newton’s method can be used to locate the exact maximum fi eld strength 
locations for various α and β confi gurations.

For practical purposes, the linear approximation of Equation (4) can be 
used to fi nd the gradient of the fi eld along the z-axis. It is found to bez-axis. It is found to bez

(5)

The fi eld strength produced by a single coil (shown in Figure 4) is

(6)

where Bxz is a vector in Cartesian coordinates and xz is a vector in Cartesian coordinates and xz ξ = r–a. The parameters 
for the two coils as shown in Figure 5 are used for calculation of the fi eld in 
the entire space. These parameters are

  (7)

(8)

(9)

(10)

Equation (6), which involves the hypergeometric F1 function (also called 
a Gauss or Kummer series), was evaluated numerically to obtain the fi eld 
strength.

As seen in Figure 6, for a fi xed radial distance, the weakest fi eld strength 
lies in the xy-plane. The contour plot of the magnetic fi eld in the xz-plane xz-plane xz
is shown in Figure 7. Figure 7 is analogous to Figure 1 in Migdall et al.13, 
but we have shown the associated fi eld expressions parametrized by α, β
and λ. Through numerical expansion, it was found that for β = 0.5, the fi eld 
strength in the xy-plane near the trap centre is 

(11)
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Figure 6 (a) Field strength on a radial line emanating from the origin (on 
the xy-plane). (b) Strength of the fi eld on the prime meridian of a sphere of 
radius r = 0.35a. Note that the fi eld strength is weakest at the equator.

Figure 7 Contour plot indicating the strength of the quadrupole fi eld produced 
by the anti-Helmholtz coils (with β=1) on the xz-plane. Darker shades indicate 
regions of weaker fi eld strength. The four white regions are where the coils 
emerge on the xz-plane, and indicate the region of the strongest fi eld strength.Figure 5 Parametrization for the anti-Helmholtz coils.
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By cylindrical symmetry, the radial gradient of the fi eld in the xy-plane 
at the origin is exactly half that along the z-axis. Equation (11) indicates oth-z-axis. Equation (11) indicates oth-z
erwise because it is a linear approximation of the fi eld in the xy-plane near 
the origin. Thus, the discarded higher order terms contribute to numerical 
errors.

RESULTS AND DISCUSSIONS

Equation (3) shows that the fi eld produced by the coils is not determined by 
individual parameters such as radius, separation distance, or current, but 
by the relationship between these parameters as characterized by α, β, and 
λ. Furthermore, Equation (3) shows that the locations of the maxima of the 
fi eld are determined only by the coils’ geometry, and not by the current.

The trap depth of anti-Helmholtz coils was deduced numerically. 
According to Figure 8, for the surface of a sphere centered at the origin, 
the weakest fi eld is on its equator. Thus a trap depth is the fi eld strength at 
the saddle point of E(mz) on some sphere of radius rsaddlersaddler . In this situation, 
particles with an average thermal energy below the interaction energy, cor-
responding to the saddle point of the energy curve, will not be able to escape 
from this sphere.

The saddle point of trapping potential E(m(m( zmzm ) was determined graphically. 
Literature on anti-Helmholtz coils does not provide the numerical value of the 
saddle point fi eld intensity13,14saddle point fi eld intensity13,14saddle point fi eld intensity . The graphical solution yields rsaddle rsaddle r ¿0.96152 and 
θ = π/2 radians to be the approximate location of the trap-depth for β = 0.5. The 
corresponding magnetic fi eld strength is approximately 3.30031 (units).

The “units” above is undetermined unless a length unit corresponding 
to the radius a is specifi ed. Since the unit for magnetic fi eld is force per unit a is specifi ed. Since the unit for magnetic fi eld is force per unit a
current per unit length, where force is given in N and current in A, this 
leaves unit length to be specifi ed. This length unit can be anything one 
chooses. For instance, we can defi ne 1 unit of length to be π meters. Once 
the unit length has been specifi ed, all other parameters, such as rsaddlersaddler , must 
adhere to the same unit. For simplicity, we set a = 1 (length unit). The value a = 1 (length unit). The value a
of 3.30031 has a unit corresponding to this choice of length. The numerical 
value 3.30031 does not change regardless of this choice. With β = 0.5, the 
fi eld strength at the saddle point is

(12)

The corresponding trap-depth energy (in K) is

(13)

where kB is the Boltzman’s constant. It is useful to note that in Equation 
(13), the dynamic parameter I is coupled with the geometric parameter I is coupled with the geometric parameter I a, 
and this ratio λ determines the trap depth, not the individual values of λ determines the trap depth, not the individual values of λ a
and I. This is valuable information when implementing a magnetic trap in 
an experiment since the heating in a coil is determined by the radius of the 
coil, but not by the separation distance. Hence, by reducing the radius of 
the coil while keeping β constant, the same trap strength is produced while 
reducing the heating of the wires.

U-chip with biased fi eld 
parallel to its surface

FIELD EQUATIONS

Atoms can be trapped above a surface on which a planar current runs 
through. One such example is the U-chip, as shown in Figure 9. One of its 
advantages is that it is more compact than an anti-Helmholtz coil, and can 
be directly placed inside a vacuum cell where the atoms are trapped.

To study the U-chip, a calculation of the magnetic fi eld produced by a 
single wire is necessary. The static magnetic fi eld produced by a single wire 
lying on the z-axis between z-axis between z z = –l and z = l carrying a current I in the posi-I in the posi-I
tive z-direction isz-direction isz

(14)

where r is the azimuthal distance from the r is the azimuthal distance from the r z-axis, and     is the azimuthal z-axis, and     is the azimuthal z
vector in cylindrical coordinates.

The U-chip consists of the fi eld generated by its U-shaped current car-
rying wire and a biased external magnetic fi eld12. As shown in Figure 9, 
the width of chip is 2w and its length is 2l. For the model presented in 
this paper, a biased fi eld is oriented in the negative x-direction as shown in 
Figure 9. Trap centres can only be formed at locations above the chip where 
the vertical fi elds produced by the U-wire confi guration are zero. Since wire 
2 does not produce any y-component fi elds, trap centres only form on the 
xz-plane. Using Equation (14), it is seen that the xz-plane. Using Equation (14), it is seen that the xz z-components of the fi elds z-components of the fi elds z
produced by wires 1 and 3 cancel each other out when α and β satisfy

(15)
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Figure 9 U-chip carrying current I lying on the I lying on the I xy-plane. Note that the 
biased fi eld is in the negative x-direction. The length of wires 1 and 3 is 2l
while the length of wire 2 is 2w.w.w

Figure 8 Field strength on spheres of varying radii. Each curve corresponds 
to a different sphere centered about the origin.
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where the following proportionality factors are used:

(16)

α must be negative since the trap centre can only be formed for x < 0. A vari-
ant of the bisection method was used to determine β.

If γ is increased while α is kept fi xed, it is found that β is decreased. To 
understand why this happens, let B13 be the strength of the downward z-z-z
component fi eld on the xz-plane due to wires 1 and 3. Let xz-plane due to wires 1 and 3. Let xz B2 be the strength 
of upward z-component fi eld on the same plane due to wire 2. Increasing z-component fi eld on the same plane due to wire 2. Increasing z γ
corresponds to either decreasing the width w or increasing the length l. In 
either case, the lengths of wires 1 and 3 relative to wire 2 is increased. In 
turn, current in wires 1 and 3 have a longer path to traverse than in wire 2, 
and hence B13 is strengthened. Thus, the gap between the strengths of two 
fi elds is decreased. Therefore, it takes less height above the chip for B2 and 
B13 to “catch up” with each other. Hence trap centres can be formed closer to 
the chip surface as γ is increased.

For some values of α, corresponding values of β satisfying Equation (15) 
do not exist. In particular, given a U-chip with fi xed l and w, there always 
exists a critical height zczcz , above which a trap centre cannot be formed, and 
below which a trap centre can always be formed. The main reason behind 
this is that the rate at which vertical fi eld strength decreases along the nega-
tive x-direction is different from the rate at which it decreases along the 
z-direction. Below z-direction. Below z zczcz , there exists a curve joining the origin (0,0) to a point 
at zczcz , along which B13 and B2 decrease at the same rate. This is the curve 
on which trap centres lie. Such a curve does not exist above zczcz . This is the 
reason for the existence of maximum trap centre height.

RESULTS AND DISCUSSIONS

Similar to the anti-Helmholtz coils, an important scaling rule for U-chips 
was deduced through numerical modelling. The relative locations at which 
the z-component of the fi eld is zero is invariant under changes in current. z-component of the fi eld is zero is invariant under changes in current. z
Since the fi eld strength is proportional to the current, the z-component of z-component of z
the magnetic fi eld would change by the same factor as I if the current is I if the current is I
changed. Hence, the trap centres remain at the same position above the chip 
if both the current and the biased fi eld strength are changed by the same 
factor. The zero magnetic fi eld locations in the z-direction are a geometric z-direction are a geometric z
property of the chip, and do not depend on the current and the biased fi eld 
strength. Thus, specifying the length and width of the U-chip also specifi es 
the places above the chip where the zeroes of the trap are formed.

The plots in Figure 10 indicate that close to the trap centre, the fi eld 
strength of the U-chip changes approximately linearly.

Reichel14 states that the gradient of the fi eld along the z-axis is z-axis is z
approximately

(17)

This approximation assumes that along the z-axis emanating from the z-axis emanating from the z
fi xed x = α w location, the z-component fi eld strength is weaker than the z-component fi eld strength is weaker than the z
x-component fi eld, since the approximations given by Reichel are exact only 
for a single straight wire with a biased fi eld perpendicular to it. Reichel’s 
approximation and the results from the present numerical study are shown 
in Table 1.

Typically, the dimensions of the chip are on the order of millimetres 
but the length scale in Table 1 is in centimetres. However, as explained in 
the case of anti-Helmholtz coils, changing the length scale corresponds to 
changes in the units given in Table 1, which can be determined by dimen-
sional analysis. γ = 1 was chosen for simplicity.

Given a U-chip with fi xed dimensions and a range of currents, there is a 
fi xed range of biased fi eld strengths that can be used to create trap centres 
above the chip. For a biased fi eld strength outside of this range, no trap 
centre can be created above the chip with any given l and w.

Conclusions
These numerical models describe scaling rules governing a U-chip and anti-
Helmholtz coils not detailed in the already extensive literature on magnetic 
traps. Since most literature on magnetic traps focuses almost exclusively on 
the experimental setup and usage of the trap rather than the detailed prop-
erties of the fi elds produced by them, numerical modelling of these traps 
has to be carried out from scratch at the beginning of every atom trapping 
experiment. By presenting a set of numerical fi eld equations, such steps can 
be minimized or avoided altogether. In addition, the scaling rules for these 
traps have shown the roles that electric current and geometric aspects of 
the traps play, both independently and in conjunction with each other, in 
determining the properties of the trapping fi eld.
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