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SUMMARY

A rigorous understanding of howmulticellular behav-
iors arise from the actions of single cells requires
quantitative frameworks that bridge the gap between
genetic circuits, the arrangement of cells in space,
and population-level behaviors. Here, we provide
such a framework for a ubiquitous class of multicel-
lular systems—namely, ‘‘secrete-and-sense cells’’
that communicate by secreting and sensing a
signaling molecule. By using formal, mathematical
arguments and introducing the concept of a pheno-
type diagram, we show how these cells tune their de-
grees of autonomous and collective behavior to
realize distinct single-cell and population-level phe-
notypes; these phenomena have biological analogs,
such as quorum sensing or paracrine signaling. We
also define the ‘‘entropy of population,’’ a measure-
ment of the number of arrangements that a popula-
tion of cells can assume, and demonstrate how a
decrease in the entropy of population accompanies
the formation of ordered spatial patterns. Our con-
ceptual framework ties together diverse systems,
including tissues and microbes, with common
principles.

INTRODUCTION

Intuition tells us that if each cell behaves freely without being

influenced by its neighbors, then a population of such autono-

mous cells would likely behave in a highly uncoordinated

manner. On the other hand, if cells strongly influence each other

by communicating with one another, then we would expect that

a population of such cells would likely behave in a highly coordi-

nated and collective manner. Because removing individual cells’

autonomy both shapes the space of possible behaviors that a

group of cells can have and limits it, cells likely have more

ways to be uncoordinated than to be coordinated with one

another. These qualitative and often loosely defined notions

about communication among cells are deeply ingrained in our
Cel
conventional thinking of multicellular behaviors such as the

development of embryos, functioning of tissues, and microbes

collectively fighting for their survival (Martinez Arias and Stewart,

2002), but many multicellular systems are too complex and

involve too many parts (e.g., genetic circuits with many parts,

cells at many different locations) for us to use intuition alone to

understand and trace the steps that lead to their behaviors

(Mehta and Gregor, 2010; Perrimon and Barkai, 2011; Markson

and Elowitz, 2014). Casting these loose ideas in a rigorous math-

ematical framework that connects genetic circuits inside cells to

population-level behaviors is crucial for understanding how ge-

netic circuits and cell-cell communication yield multicellular be-

haviors. Such frameworks would define and quantify the amount

of cell’s freedom, the amount of cells’ collectiveness, and the po-

tential trade-off between the two. They may also provide com-

mon quantitative metrics and concepts that we can apply to

many different multicellular systems.

Motivated by these considerations, this paper focuses on how

cells use their genetic circuits and cell-cell communication to

tune their ‘‘degree of autonomy’’ in order to coordinate their

gene expression levels with one another. In particular, we focus

on a ubiquitous class of multicellular system: a group of cells that

secretes and senses one type of signaling molecule that we call

‘‘secrete-and-sense cells’’ (Figure 1A) (Youk and Lim, 2014). A

secrete-and-sense cell can signal to itself (self-signaling) as

well as to other cells (neighbor signaling) because it has a recep-

tor that binds the signaling molecule secreted by both itself and

its identical neighbors (Figure 1B) (Youk and Lim, 2014; Savir

et al., 2012). Secrete-and-sense cells exist in diverse organisms.

A special and perhaps themost well-known form of secrete-and-

sense cells, called ‘‘quorum sensing cells,’’ is abundant in the

microbial world (Ng and Bassler, 2009). Quorum sensing cells

maximize their neighbor-signaling ability while minimizing their

self-signaling ability by, for example, having receptors with a

very low binding affinity for the signaling molecule. Thus, only

when there is a sufficiently high density of cells, which results

in a high density of the secreted signaling molecule, can the cells

capture enough signaling molecules to turn ON their genes.

Another special form of secrete-and-sense cells, called ‘‘auto-

crine cells,’’ is abundant in the metazoan world (Sporn and

Todaro, 1980). Unlike the quorum sensing cells, autocrine cells

maximize their self-signaling ability while minimizing their

neighbor-signaling ability by, for example, producing large
l Systems 1, 349–360, November 25, 2015 ª2015 Elsevier Inc. 349
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Figure 1. From Molecules to Populations of Cells: Our Bottom-Up Approach

(A) A secrete-and-sense cell.

(B) Secrete-and-sense cell can signal to itself (self-signaling) and signal to its neighboring cells (neighbor signaling).

(C) Outline of our bottom-up approach.

(D) Positive feedback regulation. If the cell senses less than the threshold concentration eK of the signalingmolecule, it is in theOFF state and secretes the signaling

molecule at a constant rate ROFF; otherwise the cell is ON and secretes the molecule at the maximal rate RON.

(E) The intracellular regulation (left in C) can be a negative feedback.
amounts of receptors that bind the signaling molecule. Thus, an

autocrine cell can easily capture a molecule it had just secreted

before the molecule travels far away from the cell. Many micro-

bial and metazoan secrete-and-sense cells, however, have

equally dominant self- and neighbor-signaling abilities (Youk

and Lim, 2014). Examples of secrete-and-sense cells, each

with varying degrees of self- and neighbor-signaling abilities,

include the soil amoebae D. discoideum that secrete and sense

cAMP to aggregate together (Sgro et al., 2015; Gregor et al.,

2010), cells within the embryos of D. melanogaster that regulate
350 Cell Systems 1, 349–360, November 25, 2015 ª2015 Elsevier Inc
their fates by secreting and sensing ‘‘wingless’’ (Hooper, 1994),

T cells that secrete and sense interleukin-2 (IL-2) to regulate their

population density (Hart and Alon, 2013; Hart et al., 2014), the

marine bacteria Vibrio harveyi that quorum sense to collectively

generate light (Long et al., 2009), mammary cells whose misre-

gulated secreting and sensing of IL-6 is a key step in carcinogen-

esis (Sansone et al., 2007), and E. coli cells that use synthetic

genetic circuits to quorum sense and form diverse spatial pat-

terns (You et al., 2004; Tanouchi et al., 2008; Song et al., 2009;

Pai and You, 2009; Payne et al., 2013). A recent work has
.



revealed that a 2D lattice of hair follicles underneath the skin,

despite being macroscopic organs, can also act as point-like

secrete-and-sense cells that collectively regenerate hairs

(Chen et al., 2015). The ubiquity of secrete-and-sense cells

and the fact that despite their diversity they use common types

of genetic circuits to regulate their secretion and sensing (Youk

and Lim, 2014) make these cells ideal beds for developing a

general theory.

Here we use a bottom-up approach to derive such a general

theory for secrete-and-sense cells. We first show how an iso-

lated secrete-and-sense cell uses its self-signaling (Figure 1B)

to regulate its own gene expression. We then show how this

cell’s autonomous gene regulations (which we call ‘‘autonomous

behaviors’’) morph into gene regulations that depend on the

neighbors’ signaling molecules (which we call ‘‘collective behav-

iors’’) as we increase the number of neighboring cells and the

strength of cell-cell communication. In this process, we define

and quantify the cells’ degree of autonomy, degree of collective-

ness, and the trade-off between the two by representing them as

geometric shapes in a ‘‘phenotype diagram.’’ We complete our

theory by introducing a concept of ‘‘entropy of population’’

that quantifies the consequences of tuning the degree of each

cell’s autonomy on the whole population. Finally, we give exam-

ples of how one can apply our theoretical framework to better

understand and engineer secrete-and-sense cells found in

nature.

RESULTS

Autonomous Behaviors of an Isolated Secrete-and-
Sense Cell
We first derive in detail how an isolated secrete-and-sense cell

senses its own signaling molecule to regulate its genes. An iso-

lated cell signals only to itself (self-signaling in Figure 1B) (Fallon

and Lauffenburger, 2000). The concentration of the signaling

molecule outside the cell controls the cell’s secretion rate of

the signaling molecule. Binding of the molecule to the cell’s

receptor triggers a cascade of molecular events inside the cell

(Figure 1C) that either increases (through a positive feedback,

Figure 1D) or decreases (through a negative feedback, Figure 1E)

the secretion rate by regulating a gene that encodes the signaling

molecule (orange box in Figure 1C) (Youk and Lim, 2014). This

binding usually also controls one or more ‘‘reporter genes’’

(blue-red box in Figure 1C) that regulate signaling pathways in-

side the cell (e.g., a master regulator of the stem cell’s fate)

(Hart et al., 2014; Sgro et al., 2015, Gregor et al., 2010). A

sigmoidal function usually describes the cell’s secretion rate

and the reporter gene’s expression level as a function of the

signaling molecule’s concentration. In many secrete-and-sense

cells found in nature, a step function closely approximates the

sigmoidal function (Figures 1D and 1E) (Dayarian et al., 2009;

Pai et al., 2014; Hart et al., 2014; Youk and Lim, 2014; Gregor

et al., 2010; Hermsen et al., 2010; Hart et al., 2012). That is,

the cell’s reporter gene is restricted to be either ON or OFF. An

ON cell has a secretion rate RON, and an OFF cell has a secretion

rate ROFF. RON is larger than ROFF. The cell switches between the

two states at a threshold concentration eK (Figures 1D and 1E).

The threshold concentration can be tuned, for example, by

changing the expression level of the receptor or the receptor’s
Cel
binding affinity for the signaling molecule (Pai and You, 2009;

Youk and Lim, 2014). For simplicity, we treat the cell to be

point like. The concentration (denoted S) of the signaling mole-

cule with a diffusion constant D and a degradation rate g, at

a distance r from the cell is governed by the 2D diffusion

equation:

vS

vt
= DV2S|fflffl{zfflffl}

diffusion

� gS|{z}
degradation

+ ROdðrÞ|fflfflffl{zfflfflffl}
secretion

: (Equation 1)

Here RO is the secretion rate (equal to either ROFF or RON), and

d(r) is 1 on the cell (r = 0) and zero everywhere else (r > 0). The

degradation term can represent both a passive degradation of

the signaling molecule (i.e., the molecule stochastically de-

grades) and an active degradation of the molecule by a protease

that the cell may secrete at a constant rate. A typical cell repeat-

edly measures a fluctuating concentration over a long time, aver-

ages these multiple measurements, and then uses the average

concentration to regulate its genes (Lalanne and François,

2015; Gregor et al., 2007; Govern and ten Wolde, 2012). Since

the concentration usually reaches a steady state much faster

than the time taken for this averaging, we can focus on how

the steady-state concentration regulates the cell’s behavior.

The steady-state concentration in 2D forms a gradient that expo-

nentially decays away from the cell:

SðrÞ=SOexp

��r

l

�
: (Equation 2)

Here SO is the concentration on the cell’s surface. It is propor-

tional to the secretion rate RON when the cell is ON (then we

define SOheSON) and toROFFwhen the cell is OFF (then we define

SOheSOFF ). lh
ffiffiffiffiffiffiffiffiffi
D=g

p
is the typical distance that a signaling

molecule travels before decaying. Thus, we can consider Equa-

tion 2 to describe a circular ‘‘cloud’’ of molecules, with radius l,

centered about the cell (Figure 2A). The cell senses the mole-

cules in this cloud. Here we are assuming that the time taken

for the secreted signalingmolecules to reach a steady-state level

(i.e., time taken to build the cloud) is much shorter than the time

taken for the cell to determine the concentration and then regu-

lating its genes in response to it. To make meaningful compari-

sons between the different terms, we divide all concentration

terms by the OFF state’s concentration eSOFF :8>>>>>>><>>>>>>>:

K =
eKeSOFF

SON =
eSONeSOFFeSOFF = 1

: (Equation 3)

Thus, we now measure all concentrations relative to eSOFF

(thus eSOFF = 1). Recast in these rescaled terms, SON is the con-

centration on the surface of the ON cell, whereas 1 is the con-

centration on the surface of the OFF cell. From Equation 3, we

see that SON and K are the only freely tunable parameters for

the cell. Since the cell’s state (ON or OFF) depends only on

comparing the threshold concentration K with the concentra-

tion on the cell surface (Figures 1D and 1E), a function that

compares these two values, that we call ‘‘phenotype function,’’
l Systems 1, 349–360, November 25, 2015 ª2015 Elsevier Inc. 351
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Figure 2. Autonomous Behaviors of an Isolated Cell

(A) An isolated point-like secrete-and-sense cell surrounded by a diffusive cloud of the signaling molecule. The decay length l (Equation 2) is the radius of this

diffusive cloud.

(B) Phenotype diagram of an isolated point-like cell with the positive feedback regulation.

(C) Phenotype diagram of an isolated point-like cell with the negative feedback regulation.

(D) An isolated spherical cell with radius R surrounded by a diffusive cloud of the signaling molecule.

(E) Phenotype diagram of an isolated spherical cell with the positive feedback regulation.

(F) Phenotype diagram of an isolated spherical cell with the negative feedback regulation.
would determine what the cell will do next (either maintain or

change its current ON/OFF state). Since the concentration on

the cell surface is either 1 or SON, we have two phenotype func-

tions, 4OFF and 4ON:�
4OFFðK;SONÞ= 1� K
4ONðK;SONÞ=SON � K

: (Equation 4)

For both the positive and the negative feedbacks, the sign of

4OFF determines what the OFF cell will do next (remain OFF or

turn ON), while the sign of 4ON determines what the ON cell will

do next (remain ON or turn OFF). Thus, the signs of both func-

tions determine all possible autonomous behaviors (‘‘pheno-

types’’) of the cell. The possible combinations for the signs of

4OFF and 4ON are as follows:8<: ð1Þ 4OFF > 0 and 4ON > 0
ð2Þ 4OFF < 0 and 4ON > 0
ð3Þ 4OFF < 0 and 4ON < 0

: (Equation 5)
352 Cell Systems 1, 349–360, November 25, 2015 ª2015 Elsevier Inc
The scenario in which 4OFF > 0 and 4ON < 0 cannot occur

because the secretion rate of the ON cell (RON) is larger than

the secretion rate of the OFF cell (ROFF). Thus, the concentra-

tion on the surface of the ON cell (SON) is larger than that of

the OFF cell ðeSOFF = 1Þ. Thus, 4ON >4OFF , and hence, we cannot

simultaneously have 4OFF > 0 and 4ON < 0. For both the positive

and negative feedback regulation, the above three conditions

split the plane spanned by K and SON into three regions (Fig-

ures 2B and 2C). Each region represents a distinct phenotype

of the cell. Thus, we call the resulting two diagrams, one for

the positive feedback (Figure 2B) and the other for the negative

feedback (Figure 2C), ‘‘phenotype diagrams.’’ We deduce the

phenotypes represented by each region from the input-output

step functions (Figures 1D and 1E). A cell with the positive

feedback and a cell with the negative feedback have two phe-

notypes in common. First, the cell turns itself ON and stays ON

due to self-signaling (ON region in Figures 2B and 2C). Second,

the cell’s self-signal is insufficient to maintain itself ON so the
.
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Figure 3. Quantifying Degrees of Autonomy

and of Collectiveness

(A) A basic unit of seven cells on a regular hexag-

onal lattice with an edge length aO (upper).

Adjoining multiple basic units forms a population of

N cells (lower).

(B) Pick any cell and call it cell-I (I for individual). We

focus on cell-I’s loss of autonomy as we tune its

communication with all the other cells. SI is the

concentration of the signaling molecule on cell-I.

The signaling length L is the distance that the signal

travels before decaying.

(C) Population state is denoted by a string of 2N

binary digits: (C,U), where C is cell-I’s state (C = 0 if

cell-I is OFF,C= 1 if cell-I is ON) andU is the state of

each of the N-1 neighboring cells.

(D) Phenotype diagram of cells with the positive

feedback for a particular population state (C,U) and

a fixed signaling length L.

(E) Tuning the signaling strength fN(L) (Equation 7)

yields three regimes of cell-cell signaling.
cell remains OFF (OFF region in Figures 2B and 2C). In addition,

the positive feedback enables a bistable phenotype (ON & OFF

region in Figure 2B) in which the cell can either stay ON or stay

OFF, depending on its past history. The bistable cell can switch

between ON and OFF due to external perturbations and sto-

chastic silencing or activation of its secretion. In the case of

the negative feedback, the cell can flip back and forth between

being ON and OFF over time. This occurs only if the molecule

degrades sufficiently fast and its concentration reaches the

steady state much faster than the cell can toggle between

ON and OFF. The phenotype diagrams (Figures 2B and 2C)

are geometric blueprints that tell us how the cell should tune

the key parameters, K and SON, to realize these distinct

phenotypes.

If the cell were a 3D sphere of radius R instead of being a

point (Figure 2D), we would need to solve the 3D diffusion

equation instead of Equation 1 to obtain the steady-state con-

centration around the cell in 3D. We have performed this calcu-

lation (see Supplemental Theoretical Procedures) and have

found that the cell’s radius R does not affect the ratio of eSON

to eSOFF (Figure S1). Thus, if we measure the concentration in

units of eSOFF (i.e., eSOFF = 1) through Equation 3, then SON is in-

dependent of how big the spherical cell is. As a result, we

obtain phenotype diagrams for a spherical cell (Figures 2E

and 2F) that are identical to the phenotype diagrams of the

point-like cell.
Cell Systems 1, 349–360, N
Entangled Web of Cell-Cell
Communications in a Population
We now present a general formalism to

study a population with an arbitrary num-

ber of cells. We first define a ‘‘basic unit’’

(Figure 3A), which serves as our elemen-

tary building block of larger populations.

It consists of identical secrete-and-sense

cells at each corner of a hexagon with an

edge length aO. It also has a cell at its cen-

ter (Figure 3A). To build a population of N

cells, we repeatedly tile the basic unit
next to each other (Figure 3A) (our framework is applicable to

any polygon besides the hexagon). Our main idea is to pick

any arbitrary cell in the population, call it ‘‘cell-I’’ (‘‘I’’ for individ-

ual), and then analyze how its state (ON or OFF) changes as we

tune its communication with all the other cells. We number all the

other cells (the ‘‘neighbors’’), from 1 to N � 1. The concentration

SI of the signaling molecule sensed by cell-I is the sum of the

concentration of the molecule secreted by cell-I (denoted Sself)

(Equation 2) and the concentration of the molecule secreted by

all the other cells (denoted Sneighbors) (Figure 3B):

SI = SO|{z}
due to selfð=Sself Þ

+
XN�1

j = 1

SOjexp

��rj
L

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

due to neighbors ð=SneighborsÞ

: (Equation 6)

Here, rj is the distance between a jth cell and cell-I in units of the

edge length aO. Lhl=aO is the ‘‘signaling length,’’ which is the

radius of the diffusive signal cloud (Figure 2A) in units of

the edge length. The terms SO and SOj depend on the state of

cell-I and the jth cell, respectively (i.e., they are either SON or 1).

To compute the concentration SI sensed by cell-I, we need a

system for keeping track of the state of every cell in the popula-

tion. We let C represent cell-I’s state (Figure 3C). C = 1 denotes

an ON cell-I, whereas C = 0 denotes an OFF cell-I. Similarly, we

let Cj denote the state of the jth neighbor (Figure 3C). Then the
ovember 25, 2015 ª2015 Elsevier Inc. 353



string U = (C1, C2,...,CN-1), which we call ‘‘neighbor state,’’ de-

notes the state of all the neighbors. Moreover the string of N bi-

nary digits (C, U), which we call ‘‘population state,’’ represents

the state of the whole population. Since there are 2N different

population states, the concentration SI has 2N possible values

(one for each possible value of (C, U)). This is a large number

even for a small population size (e.g., for a population of

N = 20 cells, 2N is approximately 1 million). Our challenge then

is to reduce this complexity, provide a rigorous description of

cell-I’s degree of autonomy, and reveal all possible behaviors

of the population.

Phenotype Functions for Populations
If we know cell-I’s behavior in each neighbor state, thenwe know

how cell-I would behave under all possible neighbor states. First,

we deduce cell-I’s phenotypes for a fixed state of the neighbors

(i.e., fix a value forU). For this neighbor state, we define a pheno-

type function: 4C;UðK;SON;LÞhSI � K: To construct cell-I’s

phenotype diagram for this particular neighbor state, let us first

fix the value of signaling length L so that we only need to consider

how the values of (K, SON) affect the phenotype function. We

note that the values of (K, SON) for which 4C;U = 0 form a straight

line (Figure 3D). We call the region above this line an ‘‘activation

region’’ (Figure 3D, green region). In this region, cell-I turns

ON because it senses a concentration SI that is above the

threshold concentration K (i.e., 4C;U > 0). Below the line is the

‘‘deactivation region’’ (Figure 3D, brown region). In this region,

cell-I turns OFF because it senses a concentration SI that is

below the threshold concentration K (i.e., 4C;U < 0). Repeating

this procedure for every neighbor state in a population of N cells,

we would obtain 2N activation regions and deactivation regions.

When we overlay all these regions onto one plane, we would

obtain a full phenotype diagram that shows all possible behav-

iors of cell-I because it takes into account every possible state

of the neighbors.

Main Design Principle: Self-Signaling Competes with
Neighbor Signaling to Control the Cell’s Autonomy
We have now established our formalism, but before applying it to

a population of an arbitrary size, we now explain the main princi-

ple that gives rise to different phenotypes. Our idea is to compare

the influence on cell-I by self-signaling with the neighbors’ influ-

ence. First note that the neighbors have minimal influence on

cell-I if all of them are OFF. This minimum concentration that

the neighbors can create on cell-I is (by setting SOj = 1 for all

neighbors in Equation 6):

fNðLÞ=
XN�1

j = 1

expð�rj
�
LÞ: (Equation 7)

For reasonswesee shortly,wecall fN(L) the ‘‘signalingstrength’’

function. The maximum concentration that the neighbors can

generate is SONfN(L), which is realized when all the neighbors are

ON. The difference between the maximum and the minimum (de-

noted DSneighbours) represents the range of influence that the

neighbors have on cell-I. Analogously, the difference between

themaximum (SON) and theminimumconcentration (1) generated

by cell-I on itself (denotedDSself ) represents the rangeof influence

that self-signaling has on cell-I. Specifically, having DSself larger
354 Cell Systems 1, 349–360, November 25, 2015 ª2015 Elsevier Inc
thanDSneighbours ðDSself >DSneighboursÞmeans that cell-I can sense

more of its own signaling molecules than the neighbors’ signaling

molecules, just as an autocrine cell would. In this case, we find

that the signaling strength fN(L) is less than one (Figure 3E).

On the other hand, having DSself smaller than DSneighbours

ðDSself <DSneighboursÞ means that cell-I can sense more signals

from its neighbors than from itself, just as a quorum-sensing cell

would. In this case,wefind that the signalingstrength fN(L) is larger

than one (Figure 3E). The two cases are separated by a ‘‘critical

signaling length’’ Lc, whereby the influence of self and neighbors

are exactly balanced (i.e., fN(Lc) = 1).

To state in another way, self-signaling (thus autonomy) domi-

nates when L is less than Lc, but signaling between cells (thus

collectiveness) dominates when L is larger than Lc (Figure 3E).

The critical signaling length Lc depends on the number of cells

in the population. Crucially, we can always find a critical length

for a population with any number of cells. This means that no

matter howmany cells form a population, cells can always adjust

their signaling length L so that each cell has some degree of

autonomy. From here on, we focus on cells with the positive

feedback and not repeat our calculations for cells with the nega-

tive feedback because both regulations use our theoretical

formalism in the same way.

Application of Our General Formalism to a Small
Population: A Basic Population Unit
We now apply our formalism to a small population—the hexago-

nal basic unit (Figure 3A). We choose cell-I to be at the center of

the hexagon and consider a scenario in which the signaling

length L is shorter than the critical length Lc. Applying our

formalism (see Experimental Procedures), we obtain a pheno-

type diagram with geometric regions that mark different

phenotypes of cell-I (Figure 4A, right). It has three types of re-

gions: activation regions, deactivation regions, and an autono-

mous bistable region.

The activation regions consist of several subregions. One is

the autonomous ON region in which cell-I autonomously turns it-

self ON (Figure 4A, orange ON region). The others are neighbor-

induced activation regions (Figure 4A, green regions denotedfAn), in which cell-I turns ON only if there are at least n ON neigh-

bors (Figure 4B).

The deactivation regions consist of several subregions as well.

One is the autonomous OFF region in which cell-I turns itself OFF

through self-signaling. The others are neighbor-induced deacti-

vation regions (Figure 4A, brown regions denoted fDn), in which

cell-I turns OFF unless there is more than n ON neighbors

(Figure 4B).

The autonomous bistable region (Figure 4A, yellow region de-

noted ON & OFF) represents the bistable ON & OFF phenotype

that we previously described for the isolated cell. Here the cell

is free to choose between beingONor OFF and is unable to listen

to its neighbors.

Comparing the phenotype diagram of the isolated cell (Fig-

ure 4A, left) with that of the basic population unit (Figure 4A,

right), we see that the global effect of cell-cell signaling is

reducing the combined area of the three autonomy regions

(Figure 4A, blue, yellow, orange regions) to make room for

the neighbor-induced activation regions (the fAn’s in Fig-

ure 4A) and neighbor-induced deactivation regions (the fDn’s in
.



A B

C

Figure 4. Populations with N Cells and Various Cell-Cell Signaling Strengths

(A) Phenotype diagrams for an isolated cell with the positive feedback (left) and the hexagonal basic unit with a positive feedback (right), L = 0.4 (Lc z 0.56). The

neighbor-induced activation region is green, and the neighbor-induced deactivation region is brown. Equation 9 describes the boundary lines.

(B) Each region in the basic unit’s phenotypic diagram (right, A) represents a state transition as shown here.

(C) Phenotype diagrams for a population with 121 cells (11 3 11 grid of cells) at different values of L, with Lc z 0.47. The neighbor-induced activation region is

green, and the neighbor-induced deactivation region is brown. For L > Lc, the activation-deactivation region (white region) arises.
Figure 4A). Despite its reduction, the total area of the autonomy

regions remains non-zero, meaning that cell-I can regulate its

genes autonomously. Our analysis here shows that the com-

bined area of the autonomy regions is a sensible and a quantita-

tive representation of cells’ degree of autonomy. The combined

area of the regions representing neighbor-induced phenotypes

quantifies the cells’ degree of collectiveness.

If the basic unit consists of spherical cells of radius R, we

obtain a phenotype diagram for the basic unit (Figure S1) that

is essentially identical to that of the basic unit composed of

point-like cells. The reason is that SON is independent of R if

we measure all concentrations relative to eSOFF (i.e., eSOFF = 1),

as in the case of an isolated spherical cell (see Supplemental

Experimental Procedures).
Cel
Application of Our General Formalism: Population of an
Arbitrary Size
We now apply our formalism to the most general case: a popu-

lation with N cells with a positive feedback. Thus, we can now

allow populations to be of an arbitrarily large size. Applying our

formalism (see Experimental Procedures), we obtain a pheno-

type diagram with distinct regions (Figure 4C) in which areas

depend on the signaling strength fN(L).

When the signaling strength is very weak (i.e., fN(L) < < 1), there

is a finite but nearly negligible signals from the neighbors. Thus,

we obtain a phenotype diagram (Figure 4C, left) that is similar to

that of the isolated cell (Figure 4A, left). The only difference is that

theweak signals from the neighbors have reduced the area of the

autonomous bistable region (Figure 4C, left, yellow ON & OFF
l Systems 1, 349–360, November 25, 2015 ª2015 Elsevier Inc. 355



region) and the area of the autonomous OFF region (Figure 4C,

left, blue OFF region). This contraction in the areas of the two

regions makes room for two new regions: a neighbor-induced

activation region (Figure 4C, left, green region) and a neighbor-

induced deactivation region (Figure 4C, left, brown region). As

we did in the case of the basic population unit, we see a decrease

in each cell’s degree of autonomy (i.e., decrease in combined

areas of orange, yellow, and blue regions) and as a trade-off, a

corresponding increase in the cells’ degree of collectiveness

(areas of the green and brown regions).

If we now increase the signaling length L but still keep it below

the critical signaling length Lc (Figure 4C, middle), the neighbor-

induced activation region further expands into and overtakes the

autonomous bistable region (Figure 4C, middle, green invades

into yellow). In addition, the neighbor-induced deactivation re-

gion further expands into and overtakes the autonomousOFF re-

gion (Figure 4C, middle, brown invades into blue). This further

increases the cells’ degree of collectiveness at the expense of

the decrease in the degree of autonomy in the corresponding

amount.

If we further increase the signaling length L, this time above the

critical signaling length Lc (Figure 4C, right), the autonomous bi-

stable region vanishes because the neighbor-induced activation

region completely overtakes it. The neighbor-induced activation

region also invades into the neighbor-induced deactivation re-

gion (i.e., green invades into brown region). Their merging results

in the creation of a new phenotype region that we call ‘‘activa-

tion-deactivation region’’ (Figure 4C, right, white region). In this

region, the neighbors collectively decide whether to activate or

deactivate cell-I depending on which of the two is larger: the

density of ON neighbors (leads to activation) or the density of

OFF neighbors (leads to deactivation). Thus, we can think of

this region as representing a multicellular bistable switch—a

type of quorum sensing (Ng and Bassler, 2009; Pai et al., 2012;

Mehta et al., 2009) that measures the density of ON/OFF cells

and their local spatial distributions. It is the multicellular analog

(i.e., dependent on neighbors) of the autonomous bistable switch

(Figure 4A, yellow ON & OFF region). We see additional reasons

later for why this reasoning makes sense when we analyze pop-

ulation-level dynamics enabled by the activation-deactivation

region.

We note that while the cells can increase their signaling length

L above the critical length Lc to eliminate their autonomous bista-

ble region (Figure 4C, yellow region), the autonomous ON region

(Figure 4C, orange region) and the autonomous OFF region (Fig-

ure 4C, blue region) still remain, but the cells in these two regions

must solely remain ON or remain OFF, respectively. However,

the cells in the autonomous bistable region may choose: either

stay ON or stay OFF. Increasing the signaling length L gradually

eliminates this freedom by making the autonomous bistable re-

gion vanish. Thus, while the cells’ degree of autonomy remains

non-zero when the signaling strength is above 1 (i.e., f(Lc) > 1),

the cells’ degree of autonomous choice (area of the yellow re-

gion) completely vanishes.

If we have a population of N spherical cells, we can still apply

the formalism that we applied to the population of point-like

cells. In fact, our calculations show that the phenotype diagrams

for a population of N spherical cells are essentially identical to

those of a population of N point-like cells (see Supplemental
356 Cell Systems 1, 349–360, November 25, 2015 ª2015 Elsevier Inc
Theoretical Procedures). There are quantitative differences be-

tween the population of point-like and population of spherical

cells. Namely, the radius R of the spherical cells affects the

signaling strength function (denoted fN,R(L)) and the concentra-

tion SI sensed by cell-I (Figure S1). However, the signaling

strength fN,R(L) of the spherical cells is still divided into the

same three regimes (Figure 3E) as the point-like cells.
Entropy of Population Connects Unicellular Freedom
with Population-Level Freedom
We now ask how the different unicellular phenotypes (Figure 4C)

generate population-level dynamics (i.e., connecting middle to

right in Figure 1C). To address this question, we first asked

whether there are spatial arrangements of ON and OFF cells in

which no cell’s state (i.e., ON or OFF) would change over time.

We say that such a population is in an equilibrium configuration.

To search for such equilibrium configurations, we performed

computer simulations in which we started with a randomly cho-

sen initial arrangement of ON and OFF cells in a population (see

Supplemental Theoretical Procedures). We then computed the

concentration SI for each cell (Equation 6). Then we checked

whether any cell’s state (ON or OFF) changed. If none of the cells’

states changed, the initial population is in equilibrium. By

repeating this process many times, each time with a different

configuration of the population, we counted the number of equi-

librium configurations thatN cells can formwith a particular value

of (K, SON, L). We have done this for a wide range of values of

(K, SON, L). To complement our simulations, we derived an

analytical formula that estimates the number of equilibrium pop-

ulations (denoted UE ) for each value of (K, SON, L) (see Supple-

mental Experimental Procedures). To meaningfully interpret

and compare theUE obtained by the twomethods, we define en-

tropy of population:

sðK;SON; LÞ=UE

2N
: (Equation 8)

To see what this represents, note that 2N is the total number of

possible population states with N cells (Figure 3C). Thus, s = 1

represents a maximal population-level disorder (population can

be in any configuration) and maximal population-level freedom

(any configuration is in equilibrium), while s = 1/2N represents a

minimal population-level disorder (everyone is in the same state)

and minimal population-level freedom (only one configuration is

in equilibrium). The entropy of population is thus a macroscopic

(population-level) metric based on the microscopic (unicellular)

parameters (K, SON, L) that measures the number of ways that

stable gene expression levels (ON or OFF) can be assigned to

cells at different locations. We found that the entropy of popula-

tion determined by our simulations and formula closely agreed

with each other for a wide range of values of (K, SON, L) (Figures

5A and 5B). We found that the entropy of population decreases

when the cell-cell interaction strength fN(L) increases because

cell-cell signaling to increases the cells’ coordination (compare

top and bottom in Figure 5B). We also see that the entropy of

population is highest when the cells are in the autonomous bista-

ble region (Figure 5B, yellow ON & OFF region). This makes

sense because when every cell is completely free to choose its

state the whole population can have the maximal number of
.
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Figure 5. From Disorder to Order: Entropy of

Population and Spatial Clustering Index

(A) The entropy of population (Equation 8) obtained

by exact simulations (purple points) and by an

analytical formula (red curve; see Supplemental

Theoretical Procedures). Upper is for SON = 40, and

the panel is for K = 45. Population size = 225 cells

(grid of 15 3 15 cells). L = 0.4 (L < Lc).

(B) The entropy of population obtained by exact

simulations for L = 0.4 (upper) and L = 0.6 (lower).

The population size is 121 cells (grid of 11 3 11

cells). Sharp changes in the entropy of population

occur at the boundaries between distinct pheno-

typic regions (compare with Figure 4C).

(C) Deterministic simulations of population dy-

namics. The population size is 441 cells (grid of 213

21 cells). OFF cells are blue, and ON cells are red.

Initial and final configurations of populations with

temporal changes in the clustering index IM are

shown. Results are shown for activation region

(K = 15, SON = 30, L = 0.4), deactivation region

(K = 36, SON = 30, L = 0.4), and the activation-

deactivation region (K = 61, SON = 30, L = 0.7).
possible configurations. The entropy of population thus rigor-

ously captures our qualitative notions about how unicellular au-

tonomy is linked to cell-cell coordination at the population level.

Population-Level Dynamics: Self-Organization of
Spatially Ordered Patterns from Spatially Disordered
Populations
So far we have determined how a cell can dynamically change its

state in response to signals from self and neighbors and the

number of ways that populations can be in equilibrium. The final

step of our bottom-up program (Figure 1C) is a determination of

how cells within a population reach an equilibrium configuration.

Population configurations that are not in equilibrium must, by

definition, use cell-cell signaling to readjust the behavior of

individual cells until the population reaches one of the equilibrium

configurations. Development of spatial patterns, such as

stripes and islands, occurs in real and quasi 2D systems such

as tissues and embryos (Turing, 1952; Gregor et al., 2005;

Ben-Zvi et al., 2008; Perrimon et al., 2012; Sprinzak et al.,

2010). The general principles that govern how these spatial pat-
Cell Systems 1, 349–360,
terns form from secrete-and-sense cells

have been elusive. To gain insights, we

investigated whether ON and OFF cells

that are randomly distributed over space

can dynamically self-organize into a popu-

lation with defined spatial patterns. To

quantify the spatial ordering of cells, we

define a ‘‘clustering index’’ IM, motivated

by a statistical metric called ‘‘Moran’s I’’

(Moran, 1950; see Experimental Proce-

dures). Our clustering index IM quantifies

how closely ON cells (and thus OFF cells)

cluster together in space. The clustering in-

dex can be between 0 (spatially disordered

state) and 1 (spatially ordered state) (Fig-

ure S2). As the clustering index ap-
proaches zero, ON and OFF cells become more randomly

dispersed in space. As the clustering index approaches one,

ON cells become more clustered together in one spatial region

(e.g., island of ON cells surrounded by a sea of OFF cells).

For each region of the phenotype diagrams (Figure 4C), we

used two types of simulations to determine how an initially

randomly distributed cells’ clustering index (i.e., IM = 0) evolved

over time (Figure S3). One type of simulationwas a ‘‘deterministic

simulation’’ in which each cell exactly sensed the concentration

of the signaling molecule without making errors (Figure 5C).

Another type of simulationwas a ‘‘stochastic simulation’’ inwhich

the cellsmade errors in sensing the concentration of the signaling

molecule (Figures S4 and S5). Both types of simulations are

similar in spirit to the cellular automata and Ising-type models

that researchers have previously used in studying pattern forma-

tion in developmental and neuronal systems (Ermentrout and

Edelstein-Keshet, 1993; Hopfield, 1982). In both types of simula-

tions, we discovered that if nearly 50%of the cells are initially ON

and they are in the ‘‘activation-deactivation’’ region (Figure 5C,

white region in phenotype diagram), then a spatially disordered
November 25, 2015 ª2015 Elsevier Inc. 357



population of cells (i.e., IM�0) has ahigher chanceof evolving into

a population with spatially ordered patterns (i.e., IM closest to 1)

than if the cells were in the activation region or the deactivation

region (Figure 5C, compare the three graphs of IM) (also see Fig-

ures S4, S5, and S6). Intuitively, this occurs because for a

spatially disordered population to be spatially ordered the

randomly scattered OFF cells and ON cells need to expand or

contract their territories to form consolidated islands of OFF

and ON cells, respectively. The expansion of OFF (and ON) cells

requires deactivation (and activation), which enables a clustered

region of OFF (and ON) cells to cooperatively create more OFF

(andON) cells in their adjacent regions. Suchdynamic regulations

of the shape and size of the OFF and ON regions are required to

form islands of highly clusteredOFFandONcells. Thus,when the

activation and deactivation co-exist, both ON and OFF cells can

simultaneously regulate their shapes and sizes. This enables a

spatially disordered population to evolve into a population with

a higher spatial order, more so than when activation alone or

deactivation alone is present.

We also observed in our simulations that some spatially disor-

dered populations could maintain their fraction of ON cells at a

nearly constant value over time while sharply increasing their

spatial ordering (i.e., increasing the IM to a high value near 1).

This resulted in highly defined and striking spatial patterns (highly

ordered stripes and islands of ON cells) that are stable for long

periods of time (Figure S6). The ordered spatial patterns formed

if the cells were in the activation-deactivation region of the

phenotype diagram. The entropy of population forms a land-

scape as a function of the threshold concentration K and the

maximal concentration SON (height of the landscape is repre-

sented as a heatmap in Figure 5B). This landscape has aminimal

basin (i.e., a region of local minimum for the entropy of popula-

tion) within the activation-deactivation region (Figure 5B, lower).

In our simulations, we found that cells in this region of minimal

entropy formed the most stable and ordered spatial patterns

(Figure S6). Moreover, we observed that spatial clustering of

cells strongly influences how the ON/OFF state of each cell in

a population changes over time (see Supplemental Theoretical

Procedures and Figure S7).

In summary, our results show that our quantification of de-

grees of autonomy and of collectiveness is meaningful in making

sense of population-level dynamics, including genetically iden-

tical cells self-organizing into defined spatial patterns of the

types that we encounter in animal development. In particular,

our results reveal that a decrease in the entropy of population

accompanied by a strong signaling strength, which creates the

activation-deactivation region, is correlated with the cells form-

ing highly ordered spatial patterns (Figure 5C).

DISCUSSION

On a conceptual level, we have shown that the cells’ degrees of

autonomy and of collectiveness—two concepts that are central

to all multicellular behaviors that are typically loosely and qualita-

tively treated—can be sensibly defined, quantified, and tuned.

This haspractical implications. For example, the gain of autonomy

by a few renegade secrete-and-sense cells in a healthy tissue

often marks the beginnings of a tumor growth (e.g., renegade

secreting-and-sensing of IL-6 by a few cells trigger breast carci-
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noma) (Sansone et al., 2007; Sporn and Todaro, 1980). Thus,

quantifying an increase in the autonomy and the decrease in the

collectiveness of cells may provide quantitative insights into

how tumors arise. Our theory may also aid in quantitatively

analyzing how maintaining collectiveness keeps tissues healthy.

On a practical level, our work identified the interconnected re-

lationships among the components of genetic circuits and cell-

cell signaling that experimentalists can tune to control the cells’

autonomous and collective behaviors. We also identified what

these behaviors are. The behaviors can be any features of cells

that our idealized ON/OFF genes influence downstream. Cells

can tune their threshold concentration, for example, by changing

the production level of a transcription factor that mediates the

positive or negative feedback (Youk and Lim, 2014) or by chang-

ing the abundance of the receptors that bind the signaling mole-

cule (e.g., epidermal growth factor [EGF] receptor in EGF

signaling) (DeWitt et al., 2001). Cells can tune their signaling

length, for example, by secreting a protease that degrades the

signaling molecule (e.g., Bar1 in budding yeast, Rappaport and

Barkai, 2012; Diener et al., 2014; phosphodiesterase in the soil

amoebae D. discoideum, Gregor et al., 2010). Our work shows

that varying the geometric shape of tissues or organs composed

of secreting-and-sensing cells can also tune their signaling

length. Researchers have experimentally shown many other

ways of tuning these elements (Hart et al., 2014; Sgro et al.,

2015; Gregor et al., 2010). Thus, our theory provides a readily

applicable and common framework for understanding and engi-

neering diverse multicellular systems composed of secrete-and-

sense cells. Our results for the cells with binary gene regulation

(Figures 1D and 1E) also apply to cells that have a finite Hill

coefficient controlling their positive or negative feedbacks (see

Supplemental Theoretical Procedures and Figures S8, S9,

and S10).

Our work also suggests the underappreciated ability of

secrete-and-sense cells to generate defined spatial patterns,

akin to those seen in development of animals such as the fruit

fly (e.g., via secreting-and-sensing Wingless) (Hooper, 1994).

Specifically, our work shows that given an initial arrangement

of ON and OFF secrete-and-sense cells that is spatially disor-

dered, it is possible for highly ordered spatial patterns such as

stripes and islands of ON/OFF cells to emerge, with the caveat

that the exact location of the spatial patterns in the field of cells

is determined by the initial locations of the ON and OFF cells.

Thus, if another mechanism sets up a particular initial pattern,

which can be spatially disordered (i.e., IM �0), cell-cell commu-

nication among the secrete-and-sense cells can take over and

generate highly ordered spatial patterns. This may suggest that

tissues and embryos composed of secrete-and-sense cells are

ideal candidates for realizing the ‘‘Turing-like’’ patterning mech-

anism (Turing, 1952). Despite decades of search for multicellular

systems that use a patterning mechanism similar to the one pro-

posed by Turing, it has been difficult to conclusively prove in

many systems that the observed spatial patterns originate from

Turing’s mechanism (Economou et al., 2012). The main difficulty

has been that Turing’s formulation of spatial patterning (Turing,

1952) involves only molecules (activator and inhibitor) but not

cells. We suggest that it might be fruitful to investigate how

secrete-and-sense cells in the activation-deactivation region

of the phenotype diagram (Figure 4C), despite not satisfying
.



exactly the conditions of Turing’s activator and inhibitor mole-

cules, may act a cellular analogs of Turing’s activators and

inhibitors.

We also note that the entropy of population s describes how

many spatial patterns can be stably sustained in a population

and can be rigorously defined even if the only information we

have about the population is the values of the three molecular

parameters, SON, K, and L, without knowing anything else.

Without knowing anything about the initial ON/OFF state of every

or even any cell in the population, the entropy of population will

predict precisely howmany spatial patterns can arise in the pop-

ulation and how likely it is that these patterns are spatially

ordered (through the relationship between s and the spatial clus-

tering index IM). Being able to predict a population-level property

without having detailed information about the state of any indi-

vidual cell makes the entropy of population similar in spirit to

the thermodynamic entropy (Landau and Lifshitz, 1980) and

the Shannon’s informational entropy (Shannon, 1948), both of

which quantify a systems-level property without having informa-

tion about the detailed microstate of the system. Thus, the

entropy of population allows one to predict how likely the expres-

sion level of a gene (e.g., ON/OFF) in each cell in a population

would form a spatially ordered pattern, in caseswherewe cannot

experimentally measure the expression levels of a gene in any

cell in multicellular systems such as a tissue or a biofilm. This

connection between the entropy of population and spatial order

is reminiscent of the link between the thermodynamic entropy

and the amount of disorder in a physical system and also of

the link between randomness of information in a message and

the Shannon informational entropy. It may be fruitful to investi-

gate whether there are deeper connections between Shannon’s

entropy and the entropy of population, given that both deals with

how much information is accessible to an experimentalist about

a particular system.

We hope that our work will motivate future studies that use

first principles to link genetic circuits with multicellular behav-

iors. Future works that explore alternative ways of defining

and quantifying degrees of autonomy and collectiveness in

other types of cells will, together with our theory, provide a

rigorous framework for understanding and manipulating multi-

cellular systems. As we have done here, such studies will reveal

how quantitative principles of macroscopic living systems

emerge from the microscopic laws of molecular and cellular in-

teractions (Phillips, 2015; Mehta and Gregor, 2010; Perrimon

and Barkai, 2011).
THEORETICAL PROCEDURES

Basic Unit: Boundaries of Phenotypes

The boundaries within the activation and the deactivation regions for the basic

unit (Figure 4A) are given by An(K,SON,L) and Dn(K,SON,L), respectively,

AnðK;SON; LÞ=SON � 1

ne�1=L
K +

1+ ð6� nÞe�1=L

ne�1=L
; n= 1:::6

(Equation 9)

DnðK;SON; LÞ=SON � 1

1+ ne�1=L
K +

ð6� nÞe�1=L

1+ ne�1=L
; n= 1:::6;

with A0ðK;SON; LÞ= � K + 1+ 6e�1=L and D0ðK;SON; LÞ=SON � K + 6e�1=L.

Details are in the Supplemental Theoretical Procedures.
Cel
Population with N Cells: Boundaries of Phenotypes

With theAn andDn defined as above, the boundaries in the phenotype diagram

for N cells (Figure 4C) are8>>>>>>>>><>>>>>>>>>:

A0ðK;SON; LÞ= 1+ fNðLÞ � K

AN�1ðK;SON; LÞ=SON +
1� K

fNðLÞ
D0ðK;SON; LÞ=SON � K + fNðLÞ

DN�1ðK;SON; LÞ=SON � K

1+ fNðLÞ

: (Equation 10)

Definition of the Clustering Index

We define a clustering index IM that quantifies how closely ON cells (and thus

OFF cells) are clustered together in space:

IMh

"
1XN

i = 1

XN

j = 1
wij

XN
i = 1

XN
j = 1

wij

�
Ci � C

	�
Cj � C

	# NXN

i = 1

�
Ci � C

	2:
(Equation 11)

Here rij is the distance between ith and jth cells andwijh1=rij .Cn is the state of

nth cell and C is the average of all the Cns. IM can be between 0 (spatially disor-

dered) and 1 (spatially ordered).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Theoretical Procedures and

ten figures and can be found with this article online at http://dx.doi.org/10.
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Figure S1 (Related to Figures 2D-2F). 
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Figure S1. Spherical cells and point-like cells have the same main features in their 

phenotype diagrams.  

(Related to Figures 2D-2F)  

(A-C) Radius of the spherical cell does not change the ratio of SON and SOFF, and thus 

the phenotype diagram of an isolated spherical cell is identical to the phenotype 

diagram of a point-like cell: (A) SON (red curve) and SOFF (blue curve) as a function of the 

radius R of an isolated spherical cell. SON and SOFF are the steady state concentrations on 

the surface of the ON cell (secreting at rate RON) and the OFF cell (secreting at rate ROFF) 

respectively. For illustration, we plotted SON and SOFF for RON = 10,  ROFF = 3.5, γ = 1, and λ 

=1. Increasing the cell's radius has the same effect as decreasing the secretion rates RON 

and ROFF by the same amount. (B) The fraction SON / SOFF remains unchanged and equals 

RON / ROFF regardless of changes to the radius R. For this reason, we can measure all 

concentrations in units of SOFF (i.e., set SOFF = 1) and obtain phenotype diagrams of the 

isolated spherical cell that are identical to those of the isolated point-like cell (Figure 2). (C) 

SON and SOFF are both changed by the same scaling factor.   

(D-E) The phenotype diagram of a basic hexagonal unit of spherical cells with radius R 

is identical to that of the basic unit composed of point-like cells with minor 

quantitative differences.  (D) Basic unit composed of 3-dimensional spherical cells with 

radius R. aO is the distance between the centers of two adjacent spherical cells. (E) The 

phenotype diagram of a spherical cell with the positive feedback. This phenotype diagram is 

identical to the phenotype diagram of the basic unit composed of point-like cells except for 

two quantitative differences: (1) SON for the spherical cell depends on the radius R, and (2) 

The concentration SI of the signaling molecule that cell-I (middle cell in the lattice) senses is 

based on a slightly different formula than that of the point-like cells (i.e., exp(-1/L) now 

becomes 𝑒𝑥𝑝(−1/2𝐿) 2, see supplementary text for the formula). This changes the slope of 

the boundaries in the phenotype diagram but the phenotypes themselves remain the same 

as in the point-like cells.  Crucially, since we can always measure concentrations in units 

where SOFF = 1 as we did in the case of point-like cells, the phenotype diagram (B) is 

invariant under changes in the value of the radius R as long as we reset the unit of 

concentration so that SOFF = 1 whenever we change the value of R.  

(F-G) The phenotype diagrams of a population of N spherical cells with radius R are 

identical to those of the population of N point-like cells with minor quantitative 

differences: (F) The signaling strength function fN(L) for a population of N point-like cells 

(equation [7] in the main text). This function completely determines the boundaries of the 

phenotype diagrams as a function of the signaling length L. (G) The signaling strength 

function fN,R(L) for a population of N spherical cells with radius R. Note that the two signaling 

strength functions, fN,R(L) and fN(L), are similar to each other. The two main differences are: 
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(1) The 1/rj factor in front of the exp(-rj / L) means that the contribution of each spherical cell 

to the overall signaling strength is the contribution of each point-like cell modulated by 1/rj, 

and (2) the radius of the cells modulates the combined contributions from every cell. Despite 

these two quantitative differences, the procedure for computing the phenotype diagrams for 

N spherical cells is the same as the procedure for computing the phenotype diagrams of N 

point-like cells. Importantly, the phenotype diagrams for N spherical cells have the same 

phenotypes as the N point-like cells. There are still three regimes: (1) fN,R(L) << 1 (pure self 

signaling), (2) fN,R(L) < 1 (weak neighbor signaling), and (3) fN,R(L) > 1 (strong neighbor 

signaling). But now the value of the critical length Lc depends on both R and N. Aside from 

these quantitative differences, the phenotype diagrams for N spherical cells in each of these 

three regimes are exactly identical to the phenotype diagrams of the N point-like cells (Figure 

4C). 
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Figure S2. Examples of different clustering index values.  

(Related to Figure 5) 

Disordered population (IM ~ 0.029, left panel), a population with a marginal spatial ordering 

(IM ~ 0.35, middle panel), and a population with a high spatial order (IM ~ 0.80, right panel). 
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Figure S3. Schematic of deterministic and stochastic simulations of population 

dynamics.  

(Related to Figure 5) 

In both deterministic and stochastic simulations, cells are placed on a lattice. Schematic is 

shown only for cells with the positive feedback since the negative feedback case follows the 

same principle. Each cell’s state is randomly chosen to be either ON (orange) or OFF 

(green). In the deterministic simulation, the current state of population (C, Ω) completely 

determines its next state (determined by the SI, equation [6], applied to each cell). In the 

stochastic simulation, we still use equation [6] to compute SI but each cell can make an error 

in sensing the concentration. This occurs if the SI at the cell of interest is near the threshold 

concentration K. We define a range of concentration around K, (K - δK, K+ δK). If the SI is in 

this interval, an OFF cell can turn ON even if the true SI below the threshold. Similarly, an ON 

cell can turn OFF if SI is in the interval (K - δK, K+ δK). This is similar to making the step-

function that represents the positive feedback smoother (i.e., lowering the Hill coefficient to a 

finite value so that a sigmoidal curve replaces the step function). In both simulations, time is 

measured in discrete steps. Each time step represents a change in the population state. We 

run the simulations until the population reaches an equilibrium state. 
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Figure S4. Deterministic and stochastic simulations (L = 0.4, L < Lc).  

(Related to Figure 5)  

Left column represents deterministic (top row) and stochastic (2nd ~ 4th rows) simulations 

(see Figure S3) that started with initial fraction pinitial of ON cells equal to 0 (i.e., all cells are 

OFF). Middle column represents simulations that started with initial fraction pinitial of ON cells 

equal to 0.5 (i.e., half the cells are ON). Last column represents simulations that started with 

initial fraction pinitial of ON cells equal to 1 (i.e., all the cells are ON). All the heatmaps 

represent the final, equilibrium state.  In all the heat maps, the horizontal axis denotes values 

of K (0 < K < 50) and the vertical axis denotes values of SON (0 < SON < 50). p is the fraction 

of ON cells in the population. IM is the clustering index (defined in equation [13] in the main 

text). In all the heat maps of p, darkest blue represents p = 0 (all cells are OFF) and darkest 

yellow represents p = 1 (all cells are ON). In all the heat maps of IM, darkest blue represents 

IM = 0 (random, spatially disordered population) and darkest yellow represents IM = 0.6 (more 

spatially ordered population). 
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Figure S5. Deterministic and stochastic simulations (L = 0.6, L > Lc).  

(Related to Figure 5)   

Left column represents deterministic (top row) and stochastic (2nd ~ 4th rows) simulations 

(see Figure S3) that started with initial fraction pinitial of ON cells equal to 0 (i.e., all cells are 

OFF). Middle column represents simulations that started with initial fraction pinitial of ON cells 

equal to 0.5 (i.e., half the cells are ON). Last column represents simulations that started with 

initial fraction pinitial of ON cells equal to 1 (i.e., all the cells are ON). All the heat maps 

represent the final, equilibrium state.  In all the heat maps, the horizontal axis denotes values 

of K (0 < K < 50) and the vertical axis denotes values of SON (0 < SON < 50). p is the fraction 

of ON cells in the population. IM is the clustering index (defined in equation [13] in the main 

text). In all the heat maps of p, darkest blue represents p = 0 (all cells are OFF) and darkest 

yellow represents p = 1 (all cells are ON). In all the heat maps of IM, darkest blue represents 

IM = 0 (random, spatially disordered population) and darkest yellow represents IM = 0.6 (more 

spatially ordered population). 
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Figure S6. (Related to Figure 5) 
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Figure S6. Population dynamics 

(Related to Figure 5) 

(A) Noise driven activation (L < Lc): Typical dynamics. Stochastic simulation (see Fig. S3) 

performed for a population of 441 cells (grid of 21 x 21 cells) that have positive feedback and 

are in the “activation region” of the phenotype diagram (K = 15, SON = 30, L = 0.4,  L < Lc). 

The population starts with the fraction p = 0.5 ON cells without any spatial order IM ~ 0. Then 

it reaches an equilibrium state (“final state”) over time according to the stochastic dynamics 

previously described. Time is measured in discrete steps. Each time step represents a 

change in the population state. The final state has every cell ON (thus p = 1) and a trivial 

spatial order (i.e., no islands, stripes, or patterns). Thus IM = 0 in the final state. Note that 

noise drives the population into the extreme ON state (i.e., everyone is ON) whereas in the 

deterministic simulation, p does not reach 1 for many initial population states.  

(B) Noise driven deactivation (L < Lc): Typical dynamics. Stochastic simulation (see Fig. 

S3) performed for a population of 441 cells (grid of 21 x 21 cells) that have positive feedback 

and are in the “deactivation region” of the phenotype diagram (K = 36, SON = 30, L = 0.4,  L < 

Lc). The population starts with the fraction p = 0.5 ON cells without any spatial order IM ~ 0. 

Then it reaches an equilibrium state (“final state”) over time according to the stochastic 

dynamics previously described. Time is measured in discrete steps. Each time step 

represents a change in the population state. The final state has every cell OFF (thus p = 0) 

and a trivial spatial order (i.e., no islands, stripes, or patterns). Thus IM = 0 in the final state. 

Note that noise drives the population into the extreme OFF state (i.e., everyone is OFF) 

whereas in the deterministic simulation, p does not reach 0 for many initial population states. 

(C) Noise driven simultaneous activation and deactivation (L > Lc): Typical dynamics. 

Stochastic simulation (see Fig. S3) performed for a population of 441 cells (grid of 21 x 21 

cells) that have positive feedback and are in the “activation & deactivation region” of the 

phenotype diagram (K = 61, SON = 30, L = 0.7,  L > Lc). The population starts with the fraction 

p ~ 0.5 ON cells without any spatial order IM ~ 0. Then it reaches an equilibrium state (“final 

state”) over time according to the stochastic dynamics previously described. Time is 

measured in discrete steps. Each time step represents a change in the population state. The 

final state has nearly half of the cells ON and the other half of the cells in the OFF state (thus 

p ~ 0.55). The final population is highly ordered in space(IM ~ 0.8). Note that noise can drive 

the population into a state that has a higher spatial order (i.e., larger IM) than the spatial order 

that the population can typically achieve when it evolves deterministically.  

(D-E) Initially disordered population can evolve over time to form highly ordered 

patterns that are stable over a long time: Pictures from stochastic simulations (see Fig. 

S3). All populations have 1225 cells (grid of 35 x 35 cells). All populations initially start with 
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random (IM ~ 0) spatial arrangement of ON and OFF cells, and with p=0.5 (i.e. 50% of the 

cells are initially ON, the other 50% of the cells are initially OFF). (D) Population state after 

1000 time steps (left panel) and after 2000 time steps (right panel). L = 0.6, K = 45, SON = 30. 

(E) Population state after 1000 time steps (left panel) and after 2000 time steps (right panel). 

L = 0.6, K = 47.5, SON = 30. 
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Figure S7. Comparison between the population dynamics dictated by the mean-field 

model and the deterministically simulated population dynamics.  

(Related to Figure 5) 

Red curve is the fraction p of ON cells over time dictated by the discrete version of the mean-

field model (section 3a of Supplementary Information). Blue curve is the exact value of p 

obtained through the deterministic simulations (Figure S3). The mean-field model 

recapitulates the main qualitative features of the temporal changes in p seen in the 

simulations. We observed larger deviations between the two versions of the p’s when the 

initial spatial order (i.e., the initial clustering index IM) was closer to 1. This deviation 

quantifies the effect of spatial ordering of cell states on the dynamics of the whole population. 

Note that in the case of cells in the region of simultaneous activation and deactivation, we 

see that either the entire population tends towards everyone turning ON or towards everyone 

turning OFF. This depends on the initial p and the initial spatial arrangement of ON cells. The 

two cases (case 1 & case 2) shown here illustrates why we can call this region a region of 

“multicellular bistability”. 
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Figure S8.  

(Related to Figure 1)  

(A) Sigmoidal functions with different Hill coefficients that describe the secreted 

concentration: The cell secretes signaling molecules at a rate that is a sigmoidal function of 

the concentration SI that it is sensing at a given moment. Since the concentration created on 

the cell surface is directly proportional to the secretion rate, the created concentration on the 

cell surface fn after some fixed time interval δt is also a sigmoidal function of the 

concentration SI that the cell is initially sensing.  Here we have plotted four different fn's. They 

are for n=1, 2, 5, and 100. For all of them, we used K=30, SOFF = 3, and  SON = 10. 

(B-D) Isolated cell with a positive feedback and a finite Hill coefficient: Red curves are 

the sigmoidal functions fn(SI) with a Hill coefficient n that describe the secreted concentration 

of the signaling molecule (proportional to the sigmoidal function that describes the secretion 
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rate) as a function of the concentration SI that the cell senses (see Supplementary text). Blue 

(diagonal) line represents the sensed concentration SI. Note that an isolated cell cannot 

sense more than what it can generate through its own secretion. This is the logic behind the 

arrows. The arrows represent temporal evolution of the cell's state. Black circles represent 

stable equilibrium states. The open circle represents an unstable equilibrium state. (B) Self 

activation phenotype occurs (used SOFF = 5, SON = 15, K = 5, n = 1.6). This is analogous to 

the turning "ON" phenotype of the cell with a positive feedback and an infinite Hill coefficient. 

(C) Bistability occurs (used SOFF = 0, SON = 10, K = 4.5, n = 1.6). This is analogous to the 

"bistability" phenotype of the cell with a positive feedback and an infinite Hill coefficient. (D) 

Self deactivation phenotype occurs (used SOFF = 0, SON = 8, K = 5, n = 1.6). This is 

analogous to the turning "OFF" phenotype of the cell with a positive feedback and an infinite 

Hill coefficient. 
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Figure S9. Phenotype diagrams for a population of N cells with a finite Hill coefficient 

(Weak neighbor communication: L < LC; signaling strength fN(L) = 0.5).  

(Related to Figures 3D and 3E) 

We numerically computed the phenotype diagrams for a population N cells with a positive 

feedback and a Hill coefficient n by devising a computational algorithm (see supplementary 

text). We used four different values for the Hill coefficients: (1) a "low" value (n=1), (2) an 

"intermediate" value (n=1.5), (3) a "high" value (n=2), and (4) a "near infinite" value (n=40).  

To obtain some intuition for our numerical work, we obtained phenotype diagrams for four 

initial population states: (1) cell-I is initially OFF and everyone else is initially ON, (2) cell-I is 

initially OFF and everyone else is initially OFF, (3) cell-I is initially ON and everyone else is 

initially ON, and (4) cell-I is initially ON and everyone else is initially OFF. To obtain each 

phenotype diagram, we fixed the Hill coefficient n to be one of the four values mentioned 

above. Then we simulated our computational algorithm for each value of (K, SON), which 

used an iterative algorithm that we designed (we used 50 iterations for each value of (K, 

SON)).  Then we used a color to represent a "phenotype score" (see Supplementary text). 

The phenotype score is necessary because the finite Hill coefficient allows for cells to be in a 

continuum of states between OFF and ON (instead of the binary ON and OFF states). Doing 

this for a wide range of values for K and SON resulted in a heat map (phenotype diagram). 

We used a color spectrum that starts from a pure red (representing a phenotype score of 1) 

and ends in a pure blue (representing a phenotype score of 0). A pure red represents cell-I 

being in the ON-state while a pure blue represents cell-I being in the OFF-state. An 

intermediate color such as green represents the case in which the cell-I is in between the ON 

and OFF (i.e., partially ON). A color that is closer to red means that cell-I is closer to being 

ON while a color that is closer to blue means that cell-I is closer to being OFF.  Note that the 

"near infinite" Hill coefficient is nearly identical to the phenotype diagram for cell-I (Figure 

3D). Moreover, except for the appearance of intermediate states (e.g., green regions), we 

find that the main qualitative features of the phenotype diagrams for cells with a finite Hill 

coefficient are essentially identical to the main features of the phenotype diagrams for cells 

with an infinite Hill coefficient (Figure 3D). 
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Figure S10. Phenotype diagrams for a population of N cells with a finite Hill coefficient 

(Strong neighbor communication: L > LC; signaling strength fN(L) = 1.5).  

(Related to Figures 3D and 3E)  

We numerically computed the phenotype diagrams for a population N cells with a positive 

feedback and a Hill coefficient n by devising a computational algorithm (see supplementary 

text). We used four different values for the Hill coefficients: (1) a "low" value (n=1), (2) an 

"intermediate" value (n=1.5), (3) a "high" value (n=2), and (4) a "near infinite" value (n=40).  

To obtain some intuition for our numerical work, we obtained phenotype diagrams for four 

initial population states: (1) cell-I is initially OFF and everyone else is initially ON, (2) cell-I is 

initially OFF and everyone else is initially OFF, (3) cell-I is initially ON and everyone else is 

initially ON, and (4) cell-I is initially ON and everyone else is initially OFF. To obtain each 

phenotype diagram, we fixed the Hill coefficient n to be one of the four values mentioned 

above. Then we simulated our computational algorithm for each value of (K, SON), which 

used an iterative algorithm that we designed (we used 50 iterations for each value of (K, 

SON)). Then we used a color to represent a "phenotype score" (see Supplementary text). The 

phenotype score is necessary because the finite Hill coefficient allows for cells to be in a 

continuum of states between OFF and ON (instead of the binary ON and OFF states). Doing 

this for a wide range of values for K and SON resulted in a heat map (phenotype diagram). 

We used a color spectrum that starts from a pure red (representing a phenotype score of 1) 

and ends in a pure blue (representing a phenotype score of 0). A pure red represents cell-I 

being in the ON-state while a pure blue represents cell-I being in the OFF-state. An 

intermediate color such as green represents the case in which the cell-I is in between the ON 

and OFF (i.e., partially ON). A color that is closer to red means that cell-I is closer to being 

ON while a color that is closer to blue means that cell-I is closer to being OFF.  Note that the 

"near infinite" Hill coefficient is nearly identical to the phenotype diagram for cell-I (Figure 

3D). Moreover, except for the appearance of intermediate states (e.g., green regions), we 

find that the main qualitative features of the phenotype diagrams for cells with a finite Hill 

coefficient are essentially identical to the main features of the phenotype diagrams for cells 

with an infinite Hill coefficient (Figure 3D). 
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This document is organized into following sections:

1. Three dimensional spherical cell with a finite radius

2. Entropy of population

3. Model for population dynamics without spatial arrangements of cells

4. Remarks on the clustering index - A measure of spatial arrangement of cell
states (equation (11) in the main text)

5. Remarks on the neighbour-induced activation, neighbour-induced deactiva-
tion, and the neighbour-induced activation-deactivation phenotypes

6. Finite Hill coefficient

7. Calculation of the boundaries in the phenotype diagram for the basic popu-
lation unit - Figure 4A

8. Note on the periodic boundary condition used on calculating the signaling
strength fN(L)

1. Three dimensional spherical cell with a finite radius

Instead of treating cells as point objects, we now consider 3-dimensional spherical cells with
radius R. We consider a 2-dimensional "tissue" formed by a sheet of these spherical cells
arranged in a hexagonal lattice, just as in the case of point-like cells. We let ao be the distance
between the centers of two adjacent spherical cells. The ao is the same lattice constant as in
the case of point-like cells. Whereas we considered diffusion equation in two-dimensions for
the case of point-like cells, we now consider the diffusion equation in three-dimensions with
a constant degradation rate γ and a constant secretion rate. First, let’s consider a single
isolated spherical cell whose center is at r=0. The three-dimensional diffusion equation for
the isolated cell is

∂S

∂t
=

1

r2
∂

∂r
(Dr2

∂S

∂r
)− γS +

η

4πR2
δ(r − R) (1)

where S is the concentration outside the spherical cell and δ is the Dirac delta function. The
steady state solution to this equation is spherically symmetric and is

S(r) =
SRR

r
exp(−

(r −R)

λ
) (2)

where
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SR ≡
η

4πR2

γ

λ

1

1 + λ/R
(3)

and η is the constant secretion rate. λ ≡
√

D/γ as in the case of the point-like cell.

1a. Phenotype diagram of the isolated spherical cell
If the cell is "ON", it secretes the signaling molecules at rate RON . The steady state

concentration around it becomes

SON =
RON

4πR2

γ

λ

1

1 + λ/R
(4)

Moreover, the steady state concentration around the OFF cell that secretes the signaling
molecule at a constant rate ROFF is

SOFF =
ROFF

4πR2

γ

λ

1

1 + λ/R
(5)

Thus we see that SON/SOFF = RON/ROFF as in the case of the point-like cell (Fig. S1).
That is, the radius of the cell affects both the SON and SOFF in the same way (Fig. S1).
Therefore, for a cell with a given radius R, we can measure all concentrations in units of
SOFF . That is, we can set SOFF = 1 as we did for the point-like cell. For this reason, the
phenotype diagram for an isolated spherical cell with a given radius R, for both the positive
and negative feedbacks, is the same as the phenotype diagram of the point-like cell (Figures
2D, 2E, and 2F). Having the cell be spherical instead of being point-like does not change
the phenotypes that the cell can have or where the boundaries are between the phenotypes
in the phenotype diagram because the radius R scales SON and SOFF in the same way.

The only difference now is that since SON and SOFF both depend on the radius radius
R, the cell can change its radius to decrease both concentrations while keeping the secretion
rates RON and ROFF unchanged (Fig. S1). The only way that a point-like cell can decrease
either concentration is by decreasing either the RON or ROFF , whichever is appropriate. As
long as the cell tunes its threshold K to match the change in SON and SOFF associated with
the change in radius (i.e., by changing K by a factor 1

R2

1
1+λ/R

), the cell would maintain its
phenotype after the changing its size.

1b. Phenotype diagram of the basic unit composed of spherical cells
Consider the basic hexagonal unit (Fig. 3A) but now with spherical cells with radius R.

Here we will explicitly treat the scenario in which the spherical cells are close to each other,
so that ao ∼ 2R. But the basic method that we show below will be the same for spherical
cells that are further apart from each other. The only difference would be that the terms
that contain distance between cells with look more complicated. We also choose to analyze
the case of ao ∼ 2R because in real tissues, cells would be nearly touching each other. Then
the concentration SI that "cell-I" senses is
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SI = SR +
6∑

j=1

SR,j
R

rj
exp(−(rj − R)/λ) (6)

where SR,j is the value of the SR for the j-th cell and rj is the distance between cell-I and
the j-th cell. Since we have rj = ao = 2R and L = λ/ao, we have

SI = SR +

6∑

j=1

SR,j

2
exp(−1/2L) (7)

From this, we see that we obtain the phenotype diagram as in the point-like cells (Fig. 4A)
but now with exp(−1/2L) replacing the exp(−1/L) in the equation for SI and the SON now
dependent on R (Fig. S1).

1c. Phenotype diagram for N spherical cells
We now consider a population of N interacting spherical cells that is assembled by joining

multiple basic hexagonal units (Fig. 3A) as we did with the point-like cells. As hinted by
our analysis of the basic unit in the previous section, we will get a phenotype diagram that
is qualitatively the same as that of the population of N point-like cells (Fig. 4C) but now
with a slightly different equation for the straight lines that separate the different phenotype
regions (Fig. 4C). Recall from the main text that these boundary lines are defined by the
setting the phenotype function to zero: ϕ(K,SON) = 0. First, cell-I now senses the following
concentration:

SI = SR +

N−1∑

j=1

SR,j
R

rj
exp(−(rj − R)/λ) (8)

To construct the phenotype diagram for N cells, we need to solve the equation SI−K = 0
with the 4 limiting cases for (C,Ω) as we did for the point-like cells. For example, in the
limiting case in which the cell-I and everyone else in the population are OFF, we obtain
(with the signaling length L = λ/ao defined in the same way as in the point-like cells),

SI = 1 +R · exp(R/L)

N−1∑

j=1

1

rj
exp(−rj/L) (9)

where all lengths (R and rj’s) are measured in units of the lattice constant ao as we did
in the case of point-like cells. This looks very similar to the equation we get for point-like
cells, except now it depends on the cells’ radius R.

From above example, we see that we can define the signaling strength function as we
did in the point-like cells by looking the summation in above equation. The form would
now look different, and importantly, it now depends on the cell radius R. Specifically, the
signaling strength function fN,R(L) for the spherical cells is

fN,R(L) ≡ R · exp(R/L)

N−1∑

j=1

1

rj
exp(−rj/L) (10)
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We note that this is very similar to the signaling strength function fN(L) of the N point-
like cells. The main difference is that now this function depends on 1/rj and the radius R.
This formula is general and thus holds for any separation distance ao (not just for spherical
cells nearly touching each other) (Fig. S1).

2. Entropy of population

Before trying to find the "equation of motion" that describes how a population state (C, Ω)
of N secrete-and-sense cells evolves over time, we can consider two cases: (1) A population
is stable thus communications among cells will not change its state (C, Ω) over time or
(2) A population’s state change over time due to cell-cell communication. We say that the
population in the first scenario is in equilibrium. We call its state an "equilibrium state".
Finding the total number of equilibrium states is our first step towards obtaining the equation
of motion for the population state. Below we derive a formula that estimates the number of
equilibrium states.

2a - Derivation of equation (8) in the main text
We can express the total number ΩE of equilibrium populations as a sum of the number Ωk

of equilibrium populations in which k cells are ON, for each possible value of k : ΩE =
N∑
k=0

Ωk

For a population of N cells and k ON cells, we have

(
N

k

)
possible states, so that

Ωk = pe(k,N) ·

(
N

k

)
, with pe(k,N) the fraction of equilibria. In total we get :

ΩE =
N∑

k=0

pe(k,N) ∗

(
N

k

)
(11)

We can find an estimation p̃e of pe by considering a population with k ON cells as a
random variable. Each cell of such a population is a random variable, can be ON with
probability p = k/N and OFF with probability 1− p. By that means we can estimate pe by
the probability of a random population to be an equilibrium.

Let us consider a population of N cells that has k ON cells. Let p be the fraction of
ON cells, p ≡ k/N . We consider each cell’s state Ci to be a random variable that follows
the Bernoulli distribution as a function of p. Note that Ci =1 if the cell is ON and Ci

= 0 if the cell is off. Moreover each Ci is an independent variable that follows the same
Bernoulli distribution as all the other cell states. A population of cells is then defined by
an N-dimensional random variable, ZN ≡ (C1, C2, ..., CN). Since each cell state is a random
variable, the steady state concentration on the cell surface is also a random variable that is
correlated with the cell state. We define this random variable Xi, and it is

Xi = SON ∗ Ci + (1− Ci) (12)
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Here we used the fact that we are working in units of concentration in which SOFF = 1.
The total concentration Yi that a cell-i senses, which is due to the signalling molecules from
all N cells, is also a random variable:

Yi = Xi +
∑

j 6=i

Xj · e
−

rij

L , (13)

This is just the equation (6) from the main text but now recast in terms of the random
variable Xj . We want to calculate the probability that ZN(ω) is an equilibrium state. We
let pe(p,N) be the probability that a population of N cells with a fraction p of ON cells is
in equilibrium. For cells with the positive feedback (Fig. 1d in main manuscript), being in
equilibrium means that for any ON cell-i we have Yi > K whereas for any OFF cell-j we
have Yj < K". A population is in equilibrium if and only if both conditions are satisfied for
every cell in the population. Stating this in set theory notation, we have

{1, 2, ..., N} = [{i : Ci = 0} ∩ {i : Yi < K}] ∪ [{i : Ci = 1} ∩ {i : Yi ≥ K}] (14)

and since it has to be true for every cell, we have

pe(p,N) =
N⋂

i=1

[[(Ci = 0) ∩ (Yi < K)] ∪ [(Ci = 1) ∩ (Yi >= K)]] (15)

The difficulty that we face here is that not all Yi’s are independent of each other because
some cells share the all same Cis. Thus analytically exacting the value of pe(p,N) is difficult.
Instead of trying to find its exact value, let’s assume that the Yi’s are weakly dependent
(i.e., almost independent) of each other, due to the exponentially decaying value of the
concentration as a function of distance from the secreting cell. We will check the validity
of this assumption later by checking the formula that this assumption leads us to with the
results of exact simulations. Treating all Yis to be independent of each other, we have

pe(p,N) =
N∏

i=1

P ([[(Ci = 0) ∩ (Yi < K)] ∪ [(Ci = 1) ∩ (Yi ≥ K)]]) (16)

where P (S) is the probability that statement S is satisfied. Since each Ci follows the same
Bernoulli distribution, we have

pe(p,N) = P ([[(Ci = 0) ∩ (Yi < K)] ∪ [(Ci = 1) ∩ (Yi ≥ K)]])N (17)

A cell cannot be simultaneously ON and OFF. Thus above equation becomes

P ([(Ci = 0)∩(Yi < K)]∪[(Ci = 1)∩(Yi ≥ K)]]) = P ([[(Ci = 0)∩(Yi < K)]+P ([(Ci = 1)∩(Yi ≥ K)])
(18)

Moreover, we note that

P ([[(Ci = 0) ∩ (Yi < K)]) = P (Ci = 0) ∗ PCi=0(Yi < K) = (1− p) ∗ PCi=0(Yi < K), (19)
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where PCi=0 is the conditional probability given that Ci = 0. Substituting this result into
equation (17), we obtain

pe(p,N) = [(1− p) ∗ PCi=0(Yi < K) + p ∗ PCi=1(Yi > K)]N (20)

Now let’s find the two conditional probabilities, PCi=0(Yi < K) and PCi=1(Yi > K).
Finding their exact expressions is challenging. But note that Yi is a sum of a large number

(N) of the independent terms Xie
−

rij

L , each of which is small due to the exponential decay
term. Thus by an extension of the central limit theorem, we assume that each Yi follows
a Gaussian distribution. More precisely, we assume that each Yi satisfies the Lyapunov’s
condition on moments thus it converges to the normal distribution. With this assumption,
our problem is reduced to finding the mean and the standard deviation of Yi, conditional on
Ci = 0 or Ci = 1. We find that

< Yi >(Ci=0)=< Xi +
∑

j 6=i

Xj · e
−

rij

L >(Ci=0)=< 1 +
∑

j 6=i

Xj · e
−

rij

L > (21)

where we use the notation < · >(Ci=0) to denote the mean value of · conditional on Ci = 0.
Now since we have

< Xj >
∑

j 6=i

e−
rij

L = [SON ∗ p+ (1− p)] ∗ fN (L), (22)

equation (21) becomes

< Yi >(Ci=0)= 1 + [αON ∗ p+ (1− p)] ∗ fN(L) (23)

and similarly

< Yi >(Ci=1)= SON + [SON ∗ p+ (1− p)] ∗ fN(L) (24)

Next we compute the variance of Yi conditional on a given state Ci. We use Var(·)(Ci=0)

to denote the variance of · given that Ci = 0. We then have

V ar(Yi)(Ci=0) = V ar(Xj)
∑

j 6=i

(e−
rij

L )2 (25)

Since all Xj ’s are mutually independent of each other, above equation becomes

V ar(Yi)(Ci=0) = (1− p) ∗ p ∗ (SON − 1)2 ∗
∑

j 6=i

(e−
rij

L )2 (26)

Repeating the calculation for V ar(Yi)(Ci=1), we find that V ar(Yi)(Ci=1) = V ar(Yi)(Ci=0).
Given that the mean and the variance of Yi does not depend on the i under the periodic

boundary condition that we use throughout our work (i.e., under the periodic boundary
condition, fN(L) is purely a geometric property of the lattice on which the cells are placed),
we can define µOFF,p ≡< Yi >Ci=0, µON,p ≡< Yi >Ci=1, and σ2

p ≡ V ar(Yi)(Ci=0). In summary,
we have
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µOFF,p = 1 + [SON ∗ p+ (1− p)] ∗ fN(L)
µON,p = SON + [SON ∗ p+ (1− p)] ∗ fN(L)

σ2
p = (1− p) ∗ p ∗ (SON − 1)2 ∗ (

N−1∑
i=1

(e−
ri
L )2)

(27)

We are now ready to estimate the pe(p,N). For the reasons mentioned before, we can
invoke the central limit theorem to get

PCi=0(Yi < K) ∼ φ(
K−µOFF,p

σp
)

PCi=1(Yi > K) ∼ 1− φ(
K−µON,p

σp
)

(28)

where φ is the cumulative distribution function for the normal distribution with a mean
of 0 and a standard deviation of 1. Substituting these into equation (20), we have

pe(p,N) ≈ [(1− p) ∗ φ(
K − µOFF,p

σp
) + p ∗ (1− φ(

K − µON,p

σp
))]N (29)

Thus the total number ΩE of populations that are in equilibrium for a given (K,SON , L) is

ΩE ∼

N∑

k=0

[(1− p) ∗ φ(
K − µOFF,p

σp
) + p ∗ (1− φ(

K − µON,p

σp
))]N ∗

(
N

k

)
(30)

And as we did in the main text, we define the entropy of population σ as

σ =
ΩE

2N
(31)

2b. - Comparison with simulation
Now we can check how closely our estimation for the entropy of population σ (equation

31) matches the its true value. To do so, we empirically obtained σ from exact computer
simulations of population dynamics. For each value of (K,SON , L) and k (0 ≤ k ≤ N), we
performed one thousand simulations. In each simulation, we randomly a state Ci to each
one of the N cells by using the Bernoulli distribution with p = k

N
. We then compute the

concentration Yi (equation (13)) for each cell. This determines if any cell’s state needs to
change. If no cell’s state changes, then we count this population state to be an equilibrium
state. We then repeat the simulation by randomly picking the initial cell states again. Doing
this 1000 times, we obtain an empirical estimate of the pe(p,N). Doing this for a wide range
of values for (K,SON , L), we find that our estimate (equation 31) closely matches the value
that we obtain through our exact simulations (e.g., see Fig. 5a in the main text).

3. Model for population dynamics without spatial arrangements of cells

Our results in the main text suggest that spatial clustering of cells can strongly influence
how the ON/OFF state of each cell in a population changes over time. To quantify this
effect, we constructed analytical model in which N cells are in a uniformly mixing liquid
culture (thus no spatial arrangements). This "mean-field" model describes how the number
of ON cells in this culture changes over time due to cell-cell signaling. Since the cells would
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move in the liquid culture, it will randomly encounter ON and OFF cells. This is equivalent
to considering the spatially fixed population of cells (Figure 3A) but now with the spatial
clustering index IM equal to zero (i.e., ON and OFF cells are randomly arranged in space).
The mean-field model also treats scenarios in which the cells make errors in their secretion or
sensing. For different values of initial fraction of ON cells, we used the mean-field model to
compute the temporal change in the number of ON cells and compared it with the temporal
change predicted by the exact simulations (Figure S7). We found that the difference between
the two temporal trajectories of the fraction of ON cells increased as the clustering index IM
increased (i.e., as cells became more spatially ordered). In this way, our mean-field model
directly quantified the effects of spatial clustering of cells on the population dynamics.

Below we derive a mathematical model to describe the temporal evolution of any pop-
ulation state (C,Ω) without taking into account the spatial arrangements of cells. This
"mean-field" model does not take into account all the spatial details of the population. Af-
ter deriving the "equation of motion" that describes how the fraction p of ON cells changes
over time in our mean-field model, we will compare it with the temporal change in p that
we obtain from exact simulations that does account for the spatial location of each cell.

3a. Derivation of the mean-field model: Discrete version
A population of N cells can be in any one of 2N possible states. Thus if we apply our

deterministic model of cellular communication (equation (6) SI in the main text), we would
obtain the exact relationship between each of the 2N states (i.e., given a population with
state (Ci,Ω), we would know which one of the other states (Cj,Ω

′) the population would
enter at the next time step). So we can, in principle, build a "network diagram" in which
the nodes are each of the 2N states and directed arrows between them represent a transition
between the states governed by the equation (6) in the main text. But there are too many
states for this approach to be practical. Importantly, we wouldn’t necessarily obtain a sense
that we understood the important aspect of the dynamics. In order to simplify the problem,
we can consider classes of population states instead of individual population states. To do so,
we group different population states together into one class if they have the same fraction p

of ON cells in them. We have exactly

(
N

pN

)
states that have a fraction of ON cells p. There

are N+1 such classes of states. Let us now deduce the transition probabilities between any
pair of classes. Suppose we take a random population state with a fraction pj of ON cells.
Our main idea is that we can then compute SI for each cell (equation (6) in the main text)
in this state and then deduce the probability Ppj(pi) that the obtained state has a fraction
pi of ON cells.

With the same notations and logic used in the previous section, we can approximate
Ppj(pi) by the binomial distribution. Thus we have

Ppj(pi) =

(
N

Npi

)
αpiN(1− α)(1−pi)N (32)

with α ≡ 1 − (1 − pj) · φ(
K−µOFF,pj

σpj

) − pj · φ(
K−µON,pj

σpj

). There are N + 1 possible values of
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p, and thus we have (N + 1)2 values of Ppj(pi). We define a N+1 by N+1 transition matrix
M = (aij) where aij ≡ Ppj(pi). The transition matrix M is a function of SON ,K and L,
and represent a statistical approximation to how each population transitions into a different
state. At time t we have a population with a fraction p(t) of ON cells, the state at the next
time step p(t+ 1) is < p >p(t). Due to the binomial distribution, we have < p >p(t)= N · α.
By repeating this process, we can then estimate the evolution over time of p. An important
remark is that this model does not take into account any spatial arrangements of cell. Instead
it is the minimal model that we would have if the population was well mixed in space because
we assumed a randomly distributed cells in a population for each p.

3b. Derivation of the mean-field model: Continuum version
We now derive a mean-field model that treats time t to be continuous rather than as

a discrete as we did in the previous section. To get a mean-field model, we consider the
concentration of the signalling molecule to be uniformly spread out in the population. This
is equivalent to the statement that we pick a random cell within a population, then it’s
likely to be any one of the cell’s in the population. Thus the concentration sensed by this
randomly selected cell would be the SI (equation (6)) averaged over all the cells. Using the
same notations as before, the average concentration < Sneighbours >p of the molecules from
only the neighbouring cells is

< Sneighbours >p =< 1
N
·

N∑
i=1

(
∑
j 6=i

αOj · e
−

rij
L ) >p

= (p · SON + (1− p)) · fN(L)

(33)

where we have used the same calculations in deriving equation (22) in the previous section.
Then the mean value of the concentration SI sensed by a randomly chosen cell (cell-I) in the
population is

< SIOFF
>p = 1 + (p · SON + (1− p)) · fN(L)

< SION
>p = SON + (p · SON + (1− p)) · fN(L)

(34)

where < SIOFF
>p and < SION

>p are the average concentration sensed by an OFF cell and
an ON cell respectively. Now we propose an "equation of motion" by using < SIOFF

>p and
< SION

>p to mimic the step function (Figs. 1D and 1E in the main text) that represents
the secretion rate as a function of the concentration of the sensed molecule. Specifically, we
impose the probability POFF→ON that a cell transitions from OFF to ON and the probability
PON→OFF that a cell transitions from ON to OFF to be sigmoidal functions of < SIOFF

>p

and < SION
>p respectively. In the case of cells with the positive feedback, we let

POFF→ON = 1
1+( K

SIOFF

)c

PON→OFF = 1

1+(
SION

K
)c

(35)

where c is a hill coefficient. Based on these "transition functions" POFF→ON and PON→OFF ,
which are continuous versions of the discrete transition matrices we defined above, we obtain
the following "equation of motion" that describes how a population with p ON cells evolves
over time:
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dp

dt
= p · (PON→OFF + η) + (1− p) · (POFF→ON + η) (36)

where we have added the noise term η to allow for stochastic effects in cell-cell signalling
(e.g., cell makes a mistake in sensing and secretion near the threshold K due to the sharpness
of the sigmoidal function). By rearranging the terms in above equation, we can rewrite it as

dp

dt
= η(1− 2p)︸ ︷︷ ︸

Noise

+ p · PON→OFF + (1− p) · POFF→ON︸ ︷︷ ︸
signalling

(37)

Above is the continuous mean-field model’s "equation of motion".

4. Remarks on the clustering index - A measure of spatial arrangement of cell
states (equation (11) in the main text)

Here we motivate and give an intuitive idea behind Moran’s I (our "clustering index"), de-
fined in equation (11) in the main text. In order to quantify the spatial arrangement (
clustering ) of cells on a lattice, our clustering index (Moran’s I with our own definition of
the "weight" term wij) compares two statistical quantities:

• Spatial weighted covariance: Covs =
1

N∑

i=1

N∑

j=1

wij

N∑
i=1

N∑
j=1

wij(Ci − C̄)(Cj − C̄), with weight

wij between Ci and Cj defined as : wij ≡
1
rij

, where rij is the distance between cell-i

and cell-j. Here we denote C̄ ≡ 1
N

N∑
i=1

Ci)

• Variance V = 1
N

N∑
i=1

(Ci − C̄)2

Our clustering index is then defined to be

IM ≡
Covs
V

= [
1

N∑
i=1

N∑
j=1

wij

N∑

i=1

N∑

j=1

wij(Ci − C̄)(Cj − C̄)] ·
N

N∑
i=1

(Ci − C̄)2
(38)

which is just the ratio between the Covs and the V . Note that −1 ≤ IM ≤ 1, with IM =
0 when cell states are randomly arranged on a lattice and IM = 1 when there is a perfect
clustering (i.e., all ON cells are clustered together in one region). We can intuitively under-
stand IM in the following way. Consider a regional cluster of cells that are in with same
state. Then their cross product is (Ci − C̄)(Cj − C̄) = (Ci − C̄)2. Furthermore, say the
rij between any two cells in this cluster is low so that wij ∼ 1. Then for this cluster, we
have wij(Ci − C̄)(Cj − C̄) ∼ (Ci − C̄)2. We clearly see here that the more the population

is clustered the more 1
N∑

i=1

N∑

j=1

wij

N∑
i=1

N∑
j=1

wij(Ci − C̄)(Cj − C̄) gets close to 1
N

N∑
i=1

(Ci − C̄)2. In
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addition, IM increases towards 1.

In our work, although we have used the periodic (toric) boundary condition to compute the
concentration of the signaling molecule, we computed the clustering index by treating the
edges of the field of cells as hard (non-periodic) boundaries. This simplified our calculations
without affecting the main qualitative conclusions about spatial ordering of cells. With the
periodic boundary conditions, there are two possible separation distances between any pair
of cells: (1) Short distance and (2) long distance (e.g., distance measured between two cells
by traversing through left and right edges of the lattice that are joined together). By using
hard boundaries, every pair of cells has one separation distance between them.

5. Remarks on the neighbour-induced activation, neighbour-induced deactiva-
tion, and the neighbour-induced activation-deactivation phenotypes

Here we describe in more detail the collective phenotypes: neighbour-induced activation,
neighbour-induced deactivation, and neighbour-induced activation-deactivation (regions of
the phenotype diagrams shown in Fig. 4C in the main text).

The neighbour-induced activation region (green region in Fig. 4C in the main text):
An OFF cell-I in this region can potentially be turned ON if a sufficiently high density of
neighbouring cells are ON. By density, we mean that the combination of the number and
location of ON neighbouring cells is the deciding factor in whether or not an OFF cell-I can
be activated into an ON state. Since the concentration of the secreted signalling molecule
decreases with distance from the secreting cell, a large number of distant ON cells and a
small number of nearby ON cells can both produce the same concentration of the signalling
molecule around cell-I. If cell-I is ON, it will stay ON whatever the state of the other cells are
because the concentration of the signal produced by the cell-I itself is sufficient to keep it ON.

The neighbour-induced deactivation region (brown region in Fig. 4c in the main text):
We have the exact opposite behaviour from that of the "active region". If cell-I is OFF, it
will stay OFF regardless of the number of OFF and ON cells in the rest of the population.
If cell-I is ON, it will stay ON only if a sufficiently high number of the neighbours are ON.
Otherwise cell-I will turn OFF.

In the neighbour-induced activation-deactivation region (white region in Fig 4c - right
panel, in the main text), we have a simultaneous existence of activation and deactivation,
each of which we separately described above. Here, if cell-I is ON it can be deactivated if a
sufficiently high number of cells are OFF. If the cell is OFF, it can be activated if the ON
cells in the population are sufficiently close to cell-I or present in large numbers. Thus the
entire population is sensitive to both an increase and a decrease of the number of ON cells.
Moreover the population state is also sensitive to the spatial arrangements of ON and OFF
cells.
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6. Finite Hill coefficient

In the main text, we used step functions to approximate the positive and negative feedback
regulations (Figures 1D and 1E). In other words, we assumed that the secretion rate of
the signaling molecule was described by a sigmoidal function of the sensed concentration
with an infinite Hill coefficient. Although this idealisation simplified our calculations and
has been shown to capture essential features of several important gene regulatory systems,
it is important to ask how using a finite Hill coefficient would affect the main results that
we obtained in the main text. For instance, we are interested in understanding how the
phenotype diagrams that we obtained from using the step functions in the main text (Figs.
2-4 in the main text) would change if we use a finite Hill coefficient. We now address this
question.

Here we restrict our attention to cells with the positive feedback because the negative
feedback follows the same principle. Consider a cell with the positive feedback and a finite Hill
coefficient n. Before delving into any calculations, let us first intuitively see how such a cell
would regulate its secretion rate. Suppose that a cell is initially sensing some concentration
S1 and secretes the signalling molecule at some rate F (S1) in response to it. This secretion
causes the cell to establish a new concentration on its surface. Namely, if the secretion rate
remains constant at F (S1), then the cell would establish a new steady state concentration S2

on its surface after some time. This concentration would be directly proportional to the rate
F (S1). This is true for both point-like and spherical cells (see equation (3)). Sensing this
new concentration on its surface, the cell would then readjust its secretion rate to F (S2).
After some time, the establishes a new steady-state concentration S3, which is proportional
to the secretion rate F (S2). The cell then changes it secretion rate to F (S3). To treat this
scenario, we can consider a small, fixed discrete time step δt. The δt represents the time that
the cell requires to measure and respond to the the concentration of the signalling molecule
outside. No cell can instantaneously measure the concentration outside. Cells, even those
that are not secrete-and-sense cells, would take the average of many measurements of the
concentration made over some time (known as the "integration time", a la Berg and Purcell)
and set this average as the concentration outside it. Indeed this is what one means by saying
that the secretion rate is a sigmoidal function (or any other function) of the concentration
sensed by the cell. It is also for this reason that we can think in terms of a series of discrete
time steps of interval δt during which the secretion rate is held constant. Our main idea
from here on is to quantitatively describe the sequence of events described above, in which
the cell iteratively readjusts its secretion rate as a function of the quasi-statically changing
concentration outside it. We will then see if he cell converges to one or more possible
equilibrium states that are analogous to the "ON" and "OFF" states of the cells with the
infinite Hill coefficient.

Let Fn(SI) be the rate at which the cell secretes the signaling molecule when it senses
concentration SI . Then we note that for a positive feedback regulation, Fn is a sigmoidal
function of SI with a Hill coefficient n. Namely,
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Fn(SI) = ROFF +
(RON − ROFF ) · S

n
I

Kn + Sn
I

(39)

is the secretion rate when the cell detects concentration SI on its surface. Note that since
the cell secretes a continuum of values between ROFF and RON , we cannot say whether a
cell is "ON" or "OFF". The cell secretes at a constant rate Fn(SI) during the integration
time interval δt because the cell takes the time δt to change its gene expression, including
the expression level of the gene that encodes the signaling molecule (Fig. 1C). We denote
the resulting concentration on the cell after this time as fn(SI). Note that for both point-like
and spherical cells, this concentration is proportional to the secretion rate. Thus multiplying
Fn(SI) by a constant factor, we obtain fn(SI). Namely,

fn(SI) = SOFF +
(SON − SOFF ) · S

n
I

Kn + Sn
I

(40)

is the newly established concentration, after an integration time δt, on a cell that initially
senses concentration SI (Fig. S8). Note that when the Hill coefficient is infinite, we have

f∞(SI) =

{
SOFF if SI < K
SON if SI ≥ K

(41)

This matches the step-function regulation scheme that we analyzed in the main text. To be
concrete, note that if the cell senses concentration S1, then it would create concentration
fn(S1) = S2 after time δt. The cell would adjust its secretion rate to Fn(S2). This results
in a new concentration fn(S2) = S3 after time δt. And this sequence would continue. We
are interested in whether this sequence eventually converges to an equilibrium and if so, to
what value.

6a. Isolated cell
Let us consider an isolated cell, which can be either point-like or spherical. It uses

the positive feedback regulation with a Hill coefficient n. Suppose that the cell initially
senses concentration S1. After time step deltat, the cell will have created a concentration
fn(S1) = S2. The cell will then sense this new concentration, readjust its secretion rate so
that after time δt, it establishes a new concentration fn(S2) = S3. We see that the sequence
of concentrations that are established on the cell surface is

St+1 = fn(St) (42)

where we have set the characteristic time step δt to be equal to 1 without loss of generality.
By looking at the sign of St+1 − St = fn(St) − St, we can determine whether the sequence
is increasing (i.e., fn(St) > St) , decreasing (i.e., fn(St) < St ), or if it remains fixed (i.e.,
fn(St) = St). This allows us to classify the dynamics into 3 scenarios. They are: (1) self
activation, (2) self deactivation, and (3) bistability. We can graphically see these three
scenarios (Fig. S8). These three scenarios are analogous to the three phenotypes, "ON",
"OFF", and "bistability", of the cells that have an infinite Hill coefficient (Equation [3] in
the main text).
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The main difference between cells with a finite Hill coefficient and the cells with an in-
finite Hill coefficient is that the cell takes a longer time (i.e., more time steps) to reach an
equilibrium (i.e., ON or OFF state ). Our analysis shows that the higher the Hill coefficient,
the faster the cell reaches its stable equilibrium state. As we graphically show (Fig. S8),
this makes intuitive sense because the lower the Hill coefficient is, the slower the cell would
"climb up" or "slide down" the sigmoidal curve.

6b. Population of N cells with a finite Hill coefficient
We now consider a population of N cells with a positive feedback and a finite Hill coef-

ficient. As in the main text, we arrange the N cells in a regular polygonal lattice. Let us
designate a particular cell as "cell-I" as in the main text. Following the quasi steady-state
approach that we introduced above, let SO denote the concentration created by cell-I on
its surface after detecting concentration SI . As in the case of the isolated cell, the "output
concentration" SO is a sigmoidal function of the "input concentration" SI . Namely,

SO ≡ gn,K,SON
(SI) = SOFF +

(SON − SOFF ) · S
n
I

Kn + Sn
I

(43)

By measuring all concentrations in units in which SOFF = 1 as in the main text, we have

SO = gn,K,SON
(SI) = 1 +

(SON − 1) · Sn
I

Kn + Sn
I

(44)

In addition, the total concentration that cell-I senses is the sum of the concentration that it
creates on itself and the concentration that all the other cells generate on cell-I’s. Thus we
have

SI = SO +

N−1∑

j=1

SOjexp(−(rj/L)) (45)

Here SO is the concentration created by cell-I on itself and SO,j is the SO for j-th cell. If
the Hill coefficient n is infinite, then SO can take on only one of two values, SON or 1. This
is the scenario that we treat in the main text. For a finite Hill coefficient, SO can take on
a continuum of values between 1 and SON . Hence cell-I can potentially be in an infinite
number of secretion states. However, to make progress analytically and to derive results
that we can compare with those of the cell with an infinite Hill coefficient, we define a cell
to be "ON" if SO is sufficiently "close to" SON and OFF if it’s sufficiently close to 1. To
construct phenotype diagrams and have some information on the population-level behaviors,
we would like to know how cell-I would behave over time if cell-I is initially in a state C (Fig.
3C) (i.e., SO close to SON or 1 ) and the rest of the population is initially in neighbor-state
Ω (defined in Fig. 3C). To properly define the neighbor state Ω, we denote any neighboring
cell whose secretion rate is sufficiently close to the maximal secretion rate RON to be in an
"ON" state and any neighboring cell whose secretion rate is sufficiently close to the minimal
secretion rate ROFF to be in an "OFF" state, just as we do for denoting cell-I’s state. Thus
the population-state (C, Ω) is well defined even with the finite Hill coefficient.
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When we assumed that cell-I had an infinite Hill coefficient, we saw that cell-I could
either stay in the same initial state or switch to the other state (i.e., ON to OFF or OFF
to ON ). But now this is no longer true because SO can take many different values over
time. In fact the sequence of values taken on by SO can be obtained by solving the coupled
equations (44) and (45) with a given initial population-state (C,Ω). Specifically, we obtain a
recursive relation for SO over time. If we let SO,t denote the value of SO after time t (where
t is an integer because we are taking discrete time steps of size δt = 1 as in our analysis of
the isolated cell), then we have

SO,t+1 = gn,K,SON
(SO,t +

N−1∑

j=1

SOjexp(−(rj/L))) (46)

With this recursion relation, we can now investigate if cell-I’s state (i.e., the value of SO,t)
converges to an equilibrium state after a long time. Moreover, if the state does converge to
an equilibrium state, then we can ascertain if SO,t converges to SON or 1. By answering this
question, we can obtain a comprehensive picture of a population of N cells with a finite Hill
coefficient. Namely, we would be able to predict for a given set of values for (n,K,SON) and a
given initial neighbor-state Ω, which state cell-I would converge to. This yields a phenotype
diagram for cells with a finite Hill coefficient.

Graphically, we can see that when cells have the positive feedback with a finite Hill coef-
ficient, we always get either one or two stable equilibriums (Fig. S8). Moreover we see that
there are 3 possible scenarios: (1) Activation, (2) De-activation, and (3) bistability (Fig. S8).
Now we would like to know in which of these three scenarios cell-I falls under for a given set
of values for (n, K, SON). Unfortunately one cannot analytically solve the recursion relation
(46). But we can numerically solve it with the following algorithm, and thus numerically
compute the phenotype diagram for N cells with a finite Hill coefficient n:

Computational algorithm to compute the phenotype diagram for N cells with a
finite Hill coefficient:
Step 1 . For a given set of values for (n, K, SON) and an an initial population state (C,Ω),
we compute the value of SO,t for a sufficiently large t. We pick a large t because we observed
from our simulations that SO rapidly converges to an equilibrium.
Step 2 . We then assign a "phenotype score" whose values is between 0 and 1. The pheno-
type score is a measure of how close the final value of SO is to SON and SOFF = 1. If the
final value of SO is closer to SON , then the phenotype score is closer to 1. If the final value
of SO is closer to SOFF = 1, then the phenotype score is closer to 0.

We ran this algorithm for two regimes of the signaling length (L < Lc and L > Lc).
We studied four different values of the Hill coefficient n: (1) a "low" value (n = 1), (2) an
"intermediate" value (n = 1.5), (3) a "high" value (n = 2), and (4) a "near infinite" value (n
= 40). We note that n=40 already nearly matches a step function (Fig. S8) and that n=2
is already quite high in many biological systems. To obtain some intuition for the numerical
work, we analyzed four initial population states: (1) cell-I is initially OFF and everyone
else is initially ON, (2) cell-I is initially OFF and everyone else is initially OFF, (3) cell-I
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is initially ON and everyone else is initially ON, and (4) cell-I is initially ON and everyone
else is initially OFF. We computed phenotype diagrams for each of these four population-
level states using the above algorithm. To obtain each phenotype diagram, we fixed the Hill
coefficient n to be one of the four aforementioned values, then simulated above algorithm
for each value of (K,SON). Then we used a color to represent the phenotype score. Doing
this for a wide range of values for K and SON resulted in a heat map. This is the phenotype
diagram. We used a color spectrum that starts from a pure red (representing a phenotype
score of 1) and ends in a pure blue (representing a phenotype score of 0). Thus a pure red
represents an equilibrium value of SO that is close to SON while a pure blue represents an
equilibrium value of SO that is close to SOFF = 1. An intermediate color such as green
represents a case in which we obtained an intermediate value for the final value of SO in our
iterative simulation. This means that we cannot say whether the cell is ON or OFF (Figs.
S9 & S10).

As a consistency check, we note that for n=40, the simulations yield partial phenotype
diagrams that closely resemble the phenotype diagram that we analytically computed for the
cells with an infinite Hill coefficient (Fig. 3D). Note that our computed phenotype diagrams
(Figs. S9 & S10) are partial phenotype diagrams (like Fig. 3D) because they represent
what happens when we start with a particular initial population state (C, Ω). To get full
phenotype diagrams (like Fig. 4C), we need to run our simulation for all possible population
states (C, Ω), then super-impose all of them to get a single, full phenotype diagram. We
have not done this here because the (partial) phenotype diagrams of the four limiting values
of (C, Ω) already give us the boundary lines for the full phenotype diagram (i.e., the lines
that separate the distinct phenotypes in Fig. 4C).

Moreover, we note that our simulations yield important differences between a population
of N cells with a finite Hill coefficient and a population of N cells with an infinite Hill
coefficient. This difference is starkest when all cells in the population are initially OFF
(Figs. S9 & S10).

In the end, except for the appearance of intermediate states (e.g., green regions in Figs.
S9 & S10), our work shows that the main qualitative features of the phenotype diagrams
for cells with a finite Hill coefficient are essentially identical to the main features of the
phenotype diagrams for the cells with an infinite Hill coefficient (Fig. 3D).

7. Calculation of the boundaries in the phenotype diagram for the basic popu-
lation unit - Figure 4A

We choose cell-I to be at the center of the hexagon and consider L < Lc. It senses
concentration SI :

SI = SO +
6∑

j=1

SOjexp(−1/L), (47)

where we have used the same notations as in the main text. We can bin the 26 distinct
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population states (i.e., the Ω’s) into seven equivalence classes: Ω0,..., Ω6. Ωn denotes any
population with n ON cells and 6-n OFF cells at the corners of the hexagon (n=0,...,6).
Every population state (C,Ω) in a given class of population (C,Ωn) has the same phenotype
function φC,Ωn

. We denote φ0,Ωn
as An(K,SON , L) and φ1,Ωn

as Dn(K,SON , L). Then we
have

An(K,SON , L) = SON −
1

ne−1/L
K +

1 + (6− n)e−1/L

ne−1/L
, (48)

and

Dn(K,SON , L) = SON −
1

1 + ne−1/L
K +

(6− n)e−1/L

1 + ne−1/L
(49)

In the case of n = 0, we have A0 (K,SON , L)=−K+1+6exp(−1/L) and D0(K,SON , L)=SON−
K + 6exp(−1/L). Let us fix a value for the signaling length L. Then for each n, we find
the relationship between K and SON that causes An=0 (i.e., the values of (K,SON) that
cause An=0 or Dn=0 in the above equation yield straight lines) and another relationship
between K and SON that causes Dn=0 (i.e., values of (K,SON) that cause Dn=0 in the
above equation form a straight line). In the end, we obtain a total of fourteen lines that
divide the plane spanned by (K, SON) into fifteen regions (Figure 4A: right panel). This

forms the phenotype diagram of the basic unit. The activation region "Ãn" is bounded by
the lines that correspond to An−1 = 0 and An = 0. The deactivation region deactivation

region "D̃n" is bounded by the lines corresponding to Dn = 0 and Dn+1 = 0, (n=0...5).

8. Note on the periodic boundary condition used on calculating the signaling
strength fN(L)

Throughout our work, we used a periodic boundary condition that joins the edges of the
two-dimensional lattice on which the cells are placed: The North edge is joined with the
South edge, and the West edge is joined with the East edge). This leads to a sheet of cells
forming a torus ("donut" shape). Thus our work treats populations of cells as a closed tissue.
In this set up, any one cell sees the other cells the same way as any other cell would. Thus
no cell is special in this closed tissue. For this reason, the "cell-I" that we introduced in
our formalism can be any cell in the population. Moreover, the signaling strength function
fN(L) is a purely geometric property and is the same value for every cell in the population.
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