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SUMMARY

Cells form spatial patterns by coordinating their gene
expressions. How a group of mesoscopic numbers
(hundreds to thousands) of cells, without pre-exist-
ing morphogen gradients and spatial organization,
self-organizes spatial patterns remains poorly under-
stood. Of particular importance are dynamic spatial
patterns such as spiral waves that perpetually
move and transmit information. We developed an
open-source software for simulating a field of cells
that communicate by secreting any number of mole-
cules. With this software and a theory, we identified
all possible ‘‘cellular dialogues’’—ways of communi-
cating with two diffusing molecules—that yield
diverse dynamic spatial patterns. These patterns
emerge despite widely varying responses of cells to
the molecules, gene-expression noise, spatial ar-
rangements, and cell movements. A three-stage, ‘‘or-
der-fluctuate-settle’’ process forms dynamic spatial
patterns: cells form long-lived whirlpools of wavelets
that, following erratic dynamics, settle into a dynamic
spatial pattern. Our work helps in identifying gene-
regulatory networks that underlie dynamic pattern
formations.

INTRODUCTION

Spatial patterns can form when multiple cells, without pre-exist-

ing morphogen gradients, communicate with each other to coor-

dinate their gene expressions (Gregor et al., 2010; Lubensky

et al., 2011; Sgro et al., 2015; Idema et al., 2013; Manukyan et

al., 2017; Jörg et al., 2019). Understanding how cells collectively

organize spatial patterns through cell-cell communication is

crucial for understanding and engineering mammalian tissues

(Javaherian et al., 2013). Many synthetic and natural mammalian

tissues are monolayers of genetically identical cells (e.g., epithe-

lial sheets) whose gene expression levels are initially uncorre-

lated but become more correlated over time during develop-

ment, leading to specialized cell types within tissues. This
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This is an open access article under the CC BY-NC-ND license (http://
process often involves cell-cell communication (Menéndez

et al., 2010). There has been a rising interest in developing exper-

imental methods for spatially arranging individual cells in a

monolayer and then observing how such a heterogeneous tis-

sue—composed of cells at differing locations having different

gene expression levels—develops over time (Javaherian et al.,

2014). Although there are quantitative models to explain such

experiments, they are often tailored to specific tissues and

signaling molecules. Thus, it is challenging to use them as a

general framework that one can adapt to different gene circuits,

signaling molecules, and cell types (Drasdo et al., 2007).

Currently unknown is a comprehensive set of generally appli-

cable, quantitative mechanisms by which organized spatial

patterns can form in heterogeneous tissues made of meso-

scopic numbers (hundreds to thousands) of cells without pre-

existing morphogen gradients (Figure 1A, top).

To explain pattern formations, one often uses reaction-diffu-

sion equations and Turing instability in which a uniformly

spread field of chemicals develops minute fluctuations in its

chemical concentrations at some locations that grow over

time to yield spatial patterns (Figure 1A, bottom) (Turing,

1952). Although theoretical studies of Turing instability uncov-

ered many insights into how continuous fields of chemicals or

cells form patterns, the instability does not treat gene expres-

sions of individual cells when there are biologically realistic,

mesoscopic numbers of cells (Figure 1A, top). Furthermore,

while many gene networks can use Turing instability to generate

spatial patterns, they are not robust as their circuit parameters

need to be finely tuned (Marcon et al., 2016; Scholes et al.,

2019). In light of these difficulties, a promising route for explain-

ing multicellular patterning would be to develop multiscale

models that link intracellular signaling with cell-cell communica-

tion for mesoscopic numbers of cells. While researchers have

developed such models for specific systems—examples

include studies of how eyes form (Lubensky et al., 2011) and

neurons differentiate (Jörg et al., 2019 —we currently lack a

general framework for identifying widely applicable principles

of pattern formation. Motivated by this shortcoming, we sought

to build a generalized framework that uncovers relationships

between properties of cellular communication—the various

ways in which the cells secrete and sense signaling mole-

cules—and gene expression patterns (spatial patterns) that

emerge for mesoscopic populations of cells.
ublished by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Computationally Screening Cellular Dialogues to Find Ones that Enable Dynamic Patterns to Form

(A) Pattern formation by cells versus chemicals. (Top) Mechanisms by which an initially disordered field of a mesoscopic number of cells (�hundreds to thou-

sands) (left panel) become more ordered through cell-cell communication (right panel) remain poorly understood, as is the method to analyze this complex self-

organization dynamics. (Bottom) A field of chemicals or a continuumof cells (large number of tightly packed cells) initially having no pattern (left) can form a pattern

(right) without pre-existing morphogens. This is usually modeled by reaction-diffusion equations and can be understood through the Turing mechanism.

(B) Static versus dynamic patterns. (Top) Static patterns do not change over time. (Bottom) In dynamic patterns, a structure changes over time without ever

stopping (e.g., shown here is a traveling wave).

(C) Schematic of cellular dialogues. Brown (molecule-1) and green (molecule-2) circles are ligands that bind to their cognate receptors on the cell membrane.

Ligand-bound receptors trigger intracellular signal transductions that either positively or negatively regulate the production and secretion of molecules-1 and 2

(molecule-1 can self-promote or self-repress its own secretion while also regulating the secretion of molecule-2, and vice versa). Bottom row shows graphic

representation of cellular dialogues.

(legend continued on next page)
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Here, we developed an open-source software that simulates

spatial-patterning dynamics for a system of communicating

cells. One can easily modify and expand our software with

more ingredients and use it for both research and educational

purposes. We also developed algorithms for analyzing these

simulations. With the software and analysis algorithms, we

sought to quantitatively reveal mechanisms by which meso-

scopic numbers of cells can form spatial patterns. We focused

on dynamic patterns—patterns that constantly change over

time without ever stopping such as oscillations and spiral waves

(Sgro et al., 2013)—instead of static patterns that remain still

after forming (Figure 1B). Our computational search discovered

all the ways in which cells can communicate with just two

diffusing molecules to form dynamic patterns, including those

that have been experimentally observed. We found that a few

ways of communicating, which we refer to as ‘‘cellular dia-

logues,’’ can generate a large palette of complex, dynamic

spatial patterns such as whirlpools of wavelets and traveling

waves of various shapes and orientations. We devised an analyt-

ical (pen and paper) approach that recapitulates the simulations

and used it to understand why only certain cellular dialogues

can sustain dynamic spatial patterns. We found that cells form

dynamic spatial patterns through a three-stage, ‘‘order-fluc-

tuate-settle’’ process. Starting from a configuration in which

there is no spatial correlation among cells’ gene expression

levels, cells rapidly become more spatially correlated over

time, resulting in self-organized wavelets. This is followed by a

prolonged transient phase in which the wavelets constantly

and erratically form and annihilate each other. Finally, as the

wavelets settle down, a dynamic spatial pattern such as a trav-

eling wave emerges. We show that self-organized dynamic

patterns can still form despite widely varying gene expression

noise, cellular responses to the sensed molecules, spatial ar-

rangements of cells, and diffusive (random) motions of cells.

As a theoretical study, we focused on exploring how cells can

form dynamic spatial patterns, rather than explaining any

specific biological system. But our computational screen still

uncovered cellular dialogues that are known to generate dy-

namic spatial patterns in specific multicellular systems. Our

paper ends by suggesting how one can expand our work,

including the open-source software, to identify as-yet-unknown

cellular dialogues that produce known dynamic spatial patterns

in multicellular systems.

RESULTS

Computational Search for Cellular Dialogues that
Enable Self-Organized Patterns
We built a visualization software that simulates all possible ways

in which cells can communicate—which we call ‘‘cellular

dialogues’’—by secreting, sensing, and responding to two

diffusing molecules (Figure 1C). Such cells, which simulta-

neously secrete and sense one or more signaling molecules,

are ubiquitous in nature (Hart et al., 2014; Youk and Lim,
(D) Elements that we varied in simulations: cellular dialogues of all possible top

arrangement of cells. Our study first begins with an infinite Hill coefficient (i.e., dig

reporting the outcomes of these simulations, we report the result of relaxing thes

See also Figure S1.
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2014a, 2014b; Chen et al., 2015; Maire and Youk, 2015b). Our

simulations combine reaction-diffusion equations—describing

the concentrations of the molecules—and a cellular autom-

aton—describing the cells’ gene expression levels that are set

by the concentrations of the two molecules. We represent

a cellular dialogue as a network diagram that consists of two

nodes (one for each molecule) joined by signed arrows, which

can be positive (activating) or negative (repressing). A signed

arrow denotes how the sensing of one molecule, represented

by the node on which the arrow begins, increases (for a positive

arrow) or decreases (for a negative arrow) the sensing cell’s

secretion rate of a molecule that is represented by the node

on which the arrow ends (Figure 1C). We assume that both

molecules diffuse on a faster timescale than the cells can

respond—the two molecules ‘‘rapidly’’ diffuse and reach

steady-state concentrations to which the cells then respond—

as is the case in many multicellular systems (Heemskerk

et al., 2019).

We first considered cells that digitally respond to each

molecule: a cell secretes ‘‘molecule-i’’ at either a low rate

(‘‘OFF’’ state for molecule-i) or a high rate (‘‘ON’’ state for mole-

cule-i). If molecule-j activates (represses) molecule-i, then a

cell becomes ON (OFF) for molecule-i if and only if it senses a

concentration of molecule-j that is ‘‘above’’ a set threshold con-

centration. We first considered these digital cells for two rea-

sons. First, experimental studies have shown that signal trans-

duction pathways such as MAPK or other phospho-relay

cascades, which are triggered by ligand-bound receptors and

control gene expressions downstream—as in our digital cells

(Figure 1C)—can have an effective Hill coefficient with a value

of 4 or more (e.g., as high as 32 [Trunnell et al., 2011]). An effec-

tive Hill coefficient characterizes the ‘‘sharpness’’ of the cell’s

response to a ligand (Ferrell and Ha, 2014a, 2014b, 2014c; Plot-

nikov et al., 2011; Trunnell et al., 2011). Such high numbers are

due to multiple molecular parts amplifying each other’s effects

in combination. A digital (ON/OFF) response models such high-

valued Hill coefficients. The second reason is that a digital

response simplifies the mathematics that describes the

response, while retaining its main qualitative features, even

when the actual Hill coefficient of the system being modeled is

relatively low (Alon, 2006). Finally, the digital cells also have a re-

porter gene for each molecule, which we call genes ‘‘1’’ and ‘‘2,’’

which are also either ON or OFF to reflect the secretion state of

its corresponding molecule (Figure 1C, brown and green boxes).

In our simulations, we assigned a distinct color to each of the four

states, which are (ON for gene-1, ON for gene-2), (ON, OFF),

(OFF, ON), and (OFF, OFF).

We began each simulation by randomly assigning the four

gene expression states (i.e., four colors) to each cell so that

the gene expression levels were spatially uncorrelated. Thus,

the field of cells initially did not exhibit any spatial organization.

We quantitatively verified this with a ‘‘spatial index’’ metric,

which is a weighed spatial autocorrelation function that is

zero when cells are completely, spatially disorganized and
ologies, the values of the parameters for each cellular dialogue, and spatial

ital response to each of the two signaling molecules) and a regular lattice. After

e two constraints and well as other elements not depicted.
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Figure 2. Examples of Self-Organized Dynamic Patterns Found through Computational Screening

In all the figures shown here, a cell (drawn as a circle) can have four colors. Each color represents a distinct gene expression state, (gene 1 = ON/OFF, gene 2 =

ON/OFF): black means (ON, ON), red means (ON, OFF), blue means (OFF, ON), and white means (OFF, OFF). In all the simulations, a field of cells starts with a

completely spatial disordered configuration—there is no correlation between neighboring cells’ gene expression states—as exemplified by the leftmost picture

shown in (A).

(A) Traveling wave of horizontal bands. Snapshots of the formation process shown at different stages of a simulation. Assuming that one time step in the

simulation takes one min, the clocks show time passed from noon (beginning of the simulation).

(legend continued on next page)
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increases toward one as the cells become more spatially orga-

nized (see STAR Methods and Figure S1). We then observed

how each cell’s state (i.e., four colors) changed over time to

determine whether a spatial pattern formed and, if so, what

type of a pattern formed. For each cellular dialogue, we fixed

the values of all parameters (e.g., threshold concentrations

and secretion rates for each molecule), and then ran large

numbers of simulations with different initial conditions (see

STAR Methods). We screened a wide range of parameter

values for every possible cellular dialogue (STAR Methods).

We first performed such a computational search with immobile

digital cells that were placed on a regularly spaced lattice.

We will first describe these results in the next sections before

explaining how these results change when we relax the con-

straints—by randomly displacing cells so that they no long

form a regular lattice, having each cell continuously move, allow-

ing the Hill coefficient to be any finite value (i.e., analogue instead

of digital response), and including gene expression noise

(Figure 1D).

Cellular Dialogues Enable Self-Organization of Wide
Array of Dynamic Patterns
The computational search revealed a wide variety of dynamic

patterns from never-ending traveling waves (Figure 2A and Video

S1) to complex patterns consisting of wavelets that evolved

over time in an erratic, complex manner (Figure 2B). All patterns

self-organized from completely disorganized fields of cells by

their ON/OFF-states becoming more spatially correlated over

time (Figures 2A and 2B). The time taken to self-organize widely

varied and depended on the type of pattern formed. For

example, if we assume that a gene expression change such as

an ON-cell becoming an OFF-cell takes 1 min—this is one

time-step of a simulation and every cell synchronously changes

their ON/OFF states—then horizontal waves could take nearly

6 h to form (Figure 2A) whereas the constantly changing,

complex whirlpool of wavelets would not show any signs of

settling into any pattern that cyclically repeats itself even after

a week or longer (Figure 2B). Since the simulations are determin-

istic for now—we will later add gene expression noise—once

a simulation reproduces a spatial configuration that it had

before, the cell population has formed a dynamic pattern that

periodically repeats itself forever.

The dynamic patterns that we uncovered differed in their

shape, complexity, and movements (Figures 2C–2J; Videos

S1, S2, S3, and S4; and Supplemental Analysis Section S1).

Among these, the most prominent were rectilinear traveling

waves and spiral waves, both of which have high degrees of

spatial order (Figures 2C–2F). In the case of traveling waves—

which can be oriented horizontally, vertically, or diagonally

(Figures 2C, 2D, and 2G) and have a straight or bent shape (Fig-
(B) Complex pool of multiple wavelets formed, starting with a spatially disorgan

Assuming that one time step represents 1 min, the clock and the days elapsed i

(C–J) Each filmstrip shows three non-contiguous snapshots of a moving, dynami

shown, see examples in the first snapshots in (A). Where shown, the arrows rep

horizontal band, (D) traveling vertical bands, (E) a traveling zigzag band, (F) a spira

blue hexagon) oscillating over time while all cells outside the island remain static

erratic, never-ending dynamics in which multiple wavelets form and meet and a

repeating the same configuration throughout the simulation.
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ures 2D and 2E)—a rigid shape moves across space over time.

Since the simulations were deterministic and the system had

periodic boundary conditions, if the simulation revisits an earlier

spatial configuration, then it would periodically and forever

repeat the same dynamics from then on. In the case of traveling

waves, this meant that the waves perpetually propagated,

disappearing at one edge of the field and then appearing at the

opposite end. This behavior also applies to patterns that do

not propagate over space, but rather, oscillate in time. In some

cases, such oscillations were limited to a few cells that formed

an island (Figure 2H) whereas in others, every cell in the field

oscillated together (Figure 2I). In particular, an island of cells

could oscillate in such a way that individual cells oscillated

with different periods (Figure 2H), causing the entire island, as

a collective entity, to display a complex oscillation with a period

larger than four time steps. We call this a ‘‘complex’’ oscillation

because the simplest oscillation would involve all cells in the

island having the same gene expression state that oscillates

with a period of at most 4 time steps, since a cell can have

at most four distinct gene expression states (i.e., [ON/OFF,

ON/OFF]). Finally, some cellular dialogues yielded temporally

non-repeating, complex patterns consisting of whirlpools of

wavelets that evolved over time in an erratic manner (Figure 2J),

which, in many cases, transiently existed for tens of thousands

of time steps before the cells formed temporally repeating,

well-defined dynamic patterns such as horizontal waves.

Common Structural Elements in Cellular Dialogues that
Generate Dynamic Patterns
The wide array of dynamic patterns that we observed fall into

two categories (Figure 3A): (1) dynamic temporal patterns, in

which cells periodically oscillate over time but do not propagate

information over space (e.g., Figures 2H and 2I), and (2) dynamic

spatial patterns, in which cells propagate information over

space in the form of a well-defined shape (e.g., a wave front)

that moves from one part of the field to another, often from

one edge to the other edge of the field (e.g., Figures 2C–2F).

There are 44 distinct cellular dialogues in total (see STAR

Methods) that we could group into three categories: (1) those

that cannot form any dynamic patterns, (2) those that can form

only dynamic temporal patterns, and (3) those that can form

both dynamic spatial patterns and dynamic temporal patterns.

To categorize them, we developed a method to deduce,

for each cellular dialogue, all possible ways that a cell’s state

(ON/OFF, ON/OFF) can change over time. Concretely, we con-

structed a directed graph for each cellular dialogue (see Supple-

mental Analysis Section S2), which has four nodes—one for

each gene expression state—that are connected by edges

with directions that represent the allowed transitions between

the nodes. We deduced how some of the directed edges
ized field of cells. Snapshots at different stages of the simulation are shown.

ndicate at which time steps in the simulation the snapshots are taken.

c pattern that formed, starting from a spatially disorganized configuration (not

resent the direction of travel. The dynamic patterns are: (C) a single traveling

l wave, (G) traveling diagonal bands, (H) a small island of cells (enclosed in the

, (I) every cell oscillates between red and blue with period 2, and (J) seemingly

nnihilate each other with the pool of wavelets constantly evolving and never
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become inaccessible while others become accessible as we

change the cellular dialogue’s parameter values (Figure S2).

Then, following the directed edges from node to node yields all

possible ways that a cell’s gene expression can change over

time. By looking for graphs that contained cyclic paths, we iden-

tified cellular dialogues and ranges of their parameter values that

can potentially sustain dynamic patterns if they were to form.

Since self-organization of dynamic patterns can only occur for

parameter values that can sustain dynamic patterns in the first

place, we only had to check these values in simulations to see

if they led to dynamic patterns. This method, thus, vastly

reduced the range of parameter values that we had to screen.

For each cellular dialogue, we generated a large set of random

parameters and ran many simulations (see STAR Methods),

each starting with a different and randomly generated gene

expression pattern. We checked whether each of these simula-

tions yielded a dynamic pattern using automated methods (see

STAR Methods).

We discovered that cellular dialogues, when grouped into the

three categories mentioned above, form distinct tree structures

(Figures 3B–3D) in which a node denotes a particular cellular dia-

logue and an edge connects two nodes if one node (cellular dia-

logue) comes from the other node (another cellular dialogue) by

adding or removing one regulatory interaction. The fact that tree

structures emerged, which link the different cellular dialogues

together if they form the same type of patterns, suggests that

there may be common elements in the cellular dialogues that

belong to the same tree. Indeed, we found that all ten cellular di-

alogues (Figure 3B) that can only generate static configurations,

and no dynamic patterns at all, consist of two molecules that do

not mutually regulate each other and also do not have any self-

repressions. We also found that twenty-six cellular dialogues

can produce dynamic temporal patterns but not dynamic spatial

patterns (Figure 3C). Their common feature is that they all

contain a self-repression and/or a mutual feedback of the

same sign (i.e., both molecules either activate or repress each

other’s production). The sole exception to this rule, within this

family of cellular dialogues, is cellular dialogue 14 (Figure 3C).

Cellular dialogue 14 consists of an activator-inhibitor pair,

whereby one molecule promotes the production of the second

molecule, which in turn represses the production of the first
Figure 3. Computational Search Revealed Tree Structures that Group

Patterns, Dynamic Temporal Patterns, or Dynamic Spatial Patterns

(A) Two classes of dynamic patterns. (Top) Dynamic temporal patterns repeat t

Dynamic spatial patterns involve cells that transmit information over space throu

(B–D) Tree diagrams show a full classification of all 44 unique, non-trivial cellular di

cellular dialogue is a leaf (box) that is joined by branches to other cellular dialogues

the cellular dialogue. (B) Tree diagram showing all cellular dialogues that canno

teractions and self-repressions. (C) Tree diagram showing all cellular dialogues th

These all have either a self-repression (red boxes), a mutual interaction of the

exception—it has mutual interactions of different signs and no self-interactions. (D

patterns, as well as dynamic temporal patterns. These are all generated by adding

in the five red boxes have at least one positive feedback loop and can generate no

in the blue boxes have only negative self-interactions and produce dynamic sp

traveling wave where the cells oscillate simultaneously) (see Figure S3 for examp

(E) The maximum observed simulation time is a metric that naturally separates t

A node represents a cellular dialogue and the node’s shape represents the type o

observed simulation time among a large set of simulations that were performed

See also Figures S2–S4.
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molecule. Here, neither molecule regulates its own production.

However, all eight cellular dialogues that one can obtain

from cellular dialogue 14 by adding one or more self-interactions

can yield dynamic spatial patterns, in addition to dynamic

temporal patterns (Figure 3D). We could further divide these

eight cellular dialogues into two classes: ones that contain

only self-repressions (Figure 3D, blue boxes) and ones that

contain at least one self-activation (Figure 3D, red boxes). The

three cellular dialogues that contain only self-repressions

produce dynamic spatial patterns in which the moving shape

periodically changes its gene expression composition (Fig-

ure S3 and Video S3). In contrast, the five cellular dialogues

that contain at least one self-activation yield dynamic spatial

patterns such as traveling waves (Figures 2C–2G) in which

the pattern moves across the field of cells without changing in

shape or composition.

Grouping Cellular Dialogues Based on How Fast They
Form Patterns Is Equivalent to Grouping ThemBased on
Their Shared Structural Elements
We discovered that if we analyze the typical times or the longest

time that a cellular dialogue takes to form a pattern (static config-

uration or a dynamic pattern), and then group the cellular dia-

logues based on those times, then we would identify the same

three categories of cellular dialogues (Figures 3E and S4). Spe-

cifically, all eight cellular dialogues that can form dynamic spatial

patterns stood out as taking the longest times to form patterns

compared to the other cellular dialogues, by at least about

100-fold longer durations (Figure 3E, circles). As we will later

discuss, we found that these long self-organization times

(�1 week if one time step represents 1 min) are due to complex

dynamics that is intrinsic to the pattern-formation process.

We found that all cellular dialogues that cannot form dynamic

spatial patterns but do form dynamic temporal patterns take

less times to form patterns, by at least a 100-fold less, than the

ones that form dynamic spatial patterns (Figure 3E, triangles).

Finally, we discovered that the cellular dialogues that cannot

form any dynamic patterns and thus only form static configura-

tions—some of which are highly organized patterns—require

the least amounts of time to form these configurations (Figure 3E,

squares).
Cellular Dialogues Based on Their Ability to Generate Either Static

hemselves over time without transmitting information across space. (Bottom)

gh a coherent structure that moves across the field.

alogues into three distinct classes (see STARMethods). In each tree diagram, a

. As onemoves from one leaf to the next, an edge is either removed or added to

t generate any dynamic patterns. All cellular dialogues here lack mutual in-

at can generate dynamic temporal patterns but not dynamic spatial patterns.

same sign (blue boxes), or both (purple boxes). Cellular dialogue 14 is an

) Tree diagram showing all cellular dialogues that can generate dynamic spatial

at least one additional self-interaction to cellular dialogue 14. Cellular dialogues

n-oscillatory dynamic spatial patterns (e.g., traveling waves). Cellular dialogues

atial patterns but always with a concurrent dynamic temporal pattern (e.g., a

les).

he three classes of cellular dialogues (B–D) (see Figure S4 for other metrics).

f cellular dialogue (one of the three B–D). A node’s color indicates the longest

with different parameters.
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Figure 4. Analytic Framework Predicts and Explains How Cells Can Sustain Dynamic Spatial Patterns

(A–C) Three-step overview of an analytic (pen and paper) approach to understanding the simulations (see Supplemental Analysis Section S3 for details). (A) Step

1: decompose straight (top) and bent (bottom) waves into distinct layers of cells. Cells of the same layer have the same gene expression state. (B) Step 2: estimate

(legend continued on next page)
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Analytic Framework Explains How Cells Collectively
Sustain Dynamic Spatial Patterns
To explain why certain cellular dialogues enable cells to sustain

the dynamic spatial patterns after having formed them,we devel-

oped a theory that does not use simulations and still correctly

predicts when dynamic spatial patterns occur and explains

how the cells sustain them (Figures 4A–4C). The key idea behind

this analytical approach is that many dynamic spatial patterns,

from the complex whirlpools of wavelets to spiral waves, share

a common structure: one can build diverse dynamic spatial

patterns by gluing together multiple rectilinear waves (i.e., hori-

zontal, vertical, and bent waves). Thus, if we can understand

how cells can sustain rectilinear waves, we can piece them

together to understand the more complex shapes that are built

out of them. Each rectilinear wave has six distinct layers of

gene expression states (Figure 4A). Three of the layers—‘‘front,’’

‘‘middle,’’ and ‘‘back’’ (Figure 4A, red, black, and blue cells)—

constitute the wave itself and continuously move forward while

the other three layers—‘‘exterior front,’’ ‘‘exterior,’’ and ‘‘exterior

back’’—consist of all the other cells. After a one-time step, each

layer adopts the identity of the layer just behind it (e.g., the exte-

rior-front layer, which is just in front of the front layer, becomes

the front layer) (Figure 4C). This must occur at every time step

in order for the wave to continuously propagate, meaning that

the concentrations of the two molecules within each layer must

coordinately change so that the layers can synchronously

move forward. We developed a method to estimate the concen-

trations of the molecules in each layer (Figure 4B; Supplemental

Analysis Section S3).

Using the analytical approach, we derived six mathematical

inequalities, one for each layer that must all be satisfied in order

for the concentrations of the two molecules to coordinately

change to enable the rectilinear wave to propagate (Figure 4C;

Supplemental Analysis Section S3). The inequalities impose

relationships among the different parameters of the cellular

dialogues, such as the maximal secretion rates and sensing

thresholds (Figure 1D). By solving these inequalities, we found

that only five cellular dialogues—the exact same ones that we

computationally identified—can satisfy all six inequalities and

thus generate non-oscillatory dynamic spatial patterns (i.e., the

ones that do not involve concurrent dynamic temporal patterns)

(Figure 3D, red boxes). In accordance with the computational

screening, the analytical approach revealed that only two types

of rectilinear waves are possible, each differing by which gene

expression state is assigned to each layer: all cellular dialogues

with cellular dialogue 15 as the common motif (i.e., molecule-1
the total concentrations of molecules that a cell senses by exactly calculating the

neighbors and by approximating the portions of the total concentrations that ar

showing how a cell must transition to distinct layers shown in (A) at each time ste

step 2.

(D) Numerically solving the six inequalities in (C) shows that only two types of wa

(cellular dialogues 15, 36, and 33 for wave type 1; cellular dialogues 19, 33, and

(E) Adding self-activation to cellular dialogue 14 yields, in the left column, cell

expression transitions of a cell for each cellular dialogue (see Supplemental Ana

(F) Parameter values that allow for sustaining of rectilinear waves, when represe

charts. These parameter values satisfy the six inequalities derived by the analytic

purely through computational search). The spider charts show the following par

maximum secretion rate C
ðjÞ
ON for each of the two molecules.

See also Figures S5 and S6.
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promotes its own secretion) generate one type of rectilinear

wave (Figure 4D, top row) while the others, having cellular dia-

logue 19 as the common motif (i.e., molecule-2 promotes its

own secretion), generate the other type of rectilinear wave (Fig-

ure 4D, bottom row). As an exception, cellular dialogue 33 can

generate both types of traveling waves because nested in it

are both cellular dialogues 15 and 19 as sub-graphs.

To understand why only these five cellular dialogues (Fig-

ure 4D) can generate dynamic spatial patterns, we considered

the directed-graph representation of the cellular dynamics that

we introduced earlier (Supplemental Analysis Section S2). For

a wave, the directed graph must contain a cyclic path that

goes through all four nodes—one node for each gene expres-

sion state—since an exterior cell must eventually become a

front-layer cell, then a middle-layer cell, then a back-layer

cell, and then finally an exterior cell again (Figure 4C). Cellular

dialogue 14, which is the backbone of all five cellular dialogues

that generate dynamic spatial patterns (Figure 3D, red boxes),

can potentially produce a cyclic graph with these four nodes

(Figure 4E, left panel) as long as they permit parameter values

that allow each cell to cyclically traverse through the nodes.

This is because starting with a gene expression state of

(1, 0)—where the 1 means ON-state for molecule-1 and the

0 means OFF-state for molecule-2—may lead to (1, 1) due

to molecule-1 promoting molecule-2 secretion, which then

may lead to (0, 1) due to molecule-2 repressing molecule-1

secretion, which then may lead to (0, 0) due to there being

not enough molecule-1 for promoting molecule-2 secretion,

and finally, this may lead back to the starting state, (1, 0),

due to there being not enough molecule-2 for inhibiting mole-

cule-1 secretion. However, such a cycle through the four

nodes alone is insufficient for sustaining a wave because the

exterior cells must remain as exterior cells unless they are

adjacent to the front or back layer (Figure 4C). But if the exte-

rior cells have state (0, 0) and the front-layer cells have state

(1, 0), then the exterior cells near the front layer (i.e., the exte-

rior-front cells) would sense more molecule-1 than the exterior

cells that are further away from the wave. Modifying cellular

dialogue 14 by having molecule-1 promoting its own secre-

tion, as in cellular dialogue 15, would create the possibility

of the exterior-front cells activating molecule-1 secretion and

thus transition to (1,0) at the next time step, thereby becoming

a front layer whereas the exterior-layer cells remain in the (0, 0)

state (Figure 4E, top right). A similar reasoning also yields an

analogous result for cellular dialogue 19 (Figure 4E, bot-

tom right).
portions of those concentrations that are due to the cell itself and its nearest

e due to further-away cells. (C) Step 3: (right) Directed graph-representation

p, which is explained by six mathematical inequalities that are derived through

ves, shown here are possible and which cellular dialogues can produce them

34 for wave type 2).

ular dialogues 15 and 19. Directed graph -representation showing the gene

lysis Section S2).

nted as red points, form a dense region (red region) as shown in these spider

theory (C) (see Figure S6C for a direct comparison with parameter values found

ameters: threshold concentrations KðijÞ for each molecular interaction and the
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To realize the qualitative scenario described above, a cellular

dialogue must contain parameter values that satisfy all six in-

equalities that we derived (Figure 4C). We found that the five

cellular dialogues indeed admit such parameter values and

that these values—obtained through the analytical approach—

nearly perfectly match those found in the computational screen

(Figures S5 and S6). We can represent these parameter values

as spider charts (Figure 4F), which show that each of the five

cellular dialogues can realize dynamic spatial patterns with

parameter values that vary over many orders of magnitude.

The spider charts also geometrically reveal a common feature

among the five cellular dialogues: the threshold concentration

must be low for a molecule that promotes its own secretion

(Figure 4F, note the inward indentations in the red spider webs

along the axes that represent the threshold concentrations).

This makes sense because, for all types of rectilinear waves

(Figure 4D), the exterior-front cells need to turn on the secretion

of a molecule that promotes its own secretion by sensing it

from the other layers and having a low activation threshold

for that molecule would facilitate this. Taken together, our analyt-

ical approach unveiled how cells can sustain dynamic spatial

patterns.

Self-Organization Occurs through a Three-Stage,
‘‘Order-Fluctuate-Settle’’ Process
We now turn to the self-organization process itself. Given that

many of the dynamic spatial patterns are traveling waves and

that more complex dynamic spatial patterns can be built from

gluing together multiple rectilinear waves, we focused on trav-

eling waves and the core features of their self-organization

process. Our simulations revealed that traveling waves form in

three stages (Figure 5A and Video S2). First, a field of cells whose

gene expression levels form a completely disorganized spatial

configuration rapidly becomes more spatially ordered, meaning

that the gene expression levels of neighboring cells tend to

become more correlated over time. To quantify the degree of

spatial organization, we used ‘‘spatial index’’—a metric from

our previous work whose value is zero for a completely disorga-

nized spatial configuration and increases toward one as the

spatial configuration becomes more organized (see STAR

Methods and Figure 5B, left panel’s inset) (Maire and Youk,

2015a; Olimpio et al, 2018).
(B) Two macroscopic parameters—the spatial index and the fractions of cells w

simulation shown in (A). 1 min represents one timestep. (Left panel) the spatial in

organization (zero means complete disorder, i.e., no spatial correlation in gene

organization). Inset shows the spatial index rapidly increasing for the first twenty tim

of cells with gene 1 ON (red) and of gene 2 ON (blue) for a typical wave-formatio

(C) For data in (B) and genes 1 (red) and 2 (blue), we used amovingwindow to comp

fractions of cells with the specified gene ON (see STAR Methods).

(D) For a typical simulation that self-organizes into a traveling wave, we plot the tra

2 ON. The trajectory begins at the square (first time step of the simulation) and t

(E) Analogy for the three-stage self-organization process—a billiard ball rolls dow

tunnel after finding a small hole drilled into the circular bottom.

(F) Probability of forming a traveling wave for each of the five cellular dialogues

density (colored distributions), together with themedian (white circle), interquartile

are obtained by running 500 simulations for each of the parameter sets for which

Methods). Individual dots represent probabilities for individual parameter sets.

(G) Distributions of the time taken to form traveling waves for each of the five cellu

in Figure S10).

See also Figures S7–S10.
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In the following discussion, we consider one time step to

represent 1 min and express the time in minutes or hours.

Then this rapid spatial ordering typically takes less than an

hour (Figure 5A, green arrow and Figure 5B, left panel). At the

end of this process, the cells have formed multiple whirlpools

of wavelets (Figure 5A, frame at 0.33 h). Thus, begins the second

stage of self-organization: long-lived complex dynamics—last-

ing for days or weeks—in which multiple wavelets travel

through the field of cells, meeting and annihilating each other,

all the while as the cells form new wavelets to replace the de-

stroyed ones (Figure 5A, filmstrip from 0.33 h to 55 h). During

this days-long dynamics, the spatial organization neither stably

increases nor decreases—the spatial index erratically (unpre-

dictably) fluctuates over time (Figure 5B, left panel; Figure S7;

Videos S4 and S5), which we can see by plotting the Fano factor

for the spatial index over time (Figure 5C, left panel; STAR

Methods). The spatial index erratically fluctuating represents

multiple wavelets forming and annihilating at various, seemingly

random locations and wavelets unpredictably morphing over

time, all despite the fact that the simulations are completely

deterministic. Crucially, we verified that the same spatial config-

uration never repeats itself throughout the days-long dynamics

which could, in fact, last for weeks or longer if we do not termi-

nate the simulations (i.e., some fields of cells never reach a

steady state and never attain a dynamic pattern within the

allotted time for the simulations). Such erratic, complex dy-

namics is followed by the third and final stage of the self-organi-

zation process: thewavelets die down and as this occurs, amore

rigid, spatially ordered structure that travels as a wave emerges

(Figure 5A, last frame). During this final process, the spatial

index’s fluctuations rapidly decay, typically over a few hours.

The system then settles into a regular dynamic pattern that

repeats itself over time. This is marked by the sudden disappear-

ance of the fluctuations in the spatial index (Figure 5B, left figure).

This settling process takes a few minutes to several hours

(Figures 5A, purple arrow, and 5B, left panel). Leading up to

this last stage, there are no clear indications that a well-orga-

nized regular shape will emerge. This highlights the erratic, com-

plex nature of the self-organization dynamics.

The spatial index, one for each gene, represents a macrostate

variable—a single number that measures how much spatial

correlation there is in the expression of a particular gene (see
ith a particular gene ON—plotted as a function of time for the wave-forming

dex—with magnitude between zero and one—measures the degree of spatial

expression among cells and increasing values correspond to more spatial

e steps. Spatial index for gene 1 (red) and gene 2 (blue). (Right panel) Fractions

n process. Inset shows the first twenty time steps.

ute themoving coefficient of variations in the spatial index (left panel) and in the

jectory in phase space formed by the fractions of cells with gene 1ON and gene

erminates at the circle (last time step of the simulation).

n a bowl, bounces around on the flat circular bottom, and then fall through a

(detailed results in Figure S8). Violin plots showing the non-parametric kernel

range (thick vertical line) and 1.53 interquartile range (thin vertical line). Results

at least one traveling wave formed in the computational screening (see STAR

lar dialogues that enable cells to form dynamic spatial patterns (detailed results
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(A) Schematic of four additional, more complex elements that we added to our computational screen.

(B) We examined two features with the elements in (A): (Top) can a disorganized field of cells still self-organize dynamic spatial patterns? (Bottom) Starting with a

traveling wave, can the cells sustain it?

(C) Examples of dynamic spatial patterns formed for each of the elements shown in (A). Colored boxes that enclose the filmstrips correspond to the colors used for
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(legend continued on next page)
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STAR Methods). Another macrostate variable is the fraction of

cells that have the same gene expression level (i.e., fractions of

cells that have gene-i in the ON-state). There are two such frac-

tions, one for each gene. During the self-organization process,

these two fractions erratically fluctuate over time—just like the

spatial indices—as the wavelets constantly and erratically

change their shapes while meeting and annihilating each other

for days. Afterward, the two fractions’ fluctuations quickly decay

over time—the decay takes a few hours whereas the whole

self-organization process takes days—and eventually settle at

steady-state values (Figures 5B, 5C, right panel, and S7).

When we view the temporal change of these two fractions as a

trajectory in a plane—a phase space—defined by the two frac-

tions, we see an irregular orbit that eventually stops at a single

point (Figure 5D, black circle). Specifically, a point in the two-

dimensional phase space—representing the values of the two

fractions at a given time—erratically moves within a restricted

region of the plane. If we follow the trajectory with a pencil, we

would obtain a jagged curve that densely and nearly entirely

fills the whole space within the restricted region that encloses

the single point where the trajectory terminates (Video S4).

The phase-space trajectory described above suggests the

following analogy for the self-organization dynamics (Figure 5E):

a ball quickly rolls down a steep side of a large bowl, speeding

up as it does so, until it reaches the bowl’s flat bottom. This is

the first stage of self-organization in which the decreasing

height represents more spatial ordering (Figure 5E, green arrow).

After reaching the frictionless, flat circular bottom, the ball

rapidly bounces off the sidewalls, like a billiard ball, without

ever losing its speed (Figure 5E, brown dashed lines). This

bouncing ball, which would produce seemingly erratic yet deter-

ministic motion—as Newton’s laws ofmotion are deterministic—

represents the second stage of self-organization in which

multiple whirlpools of wavelets are unpredictably created and

destroyed. Eventually, the ball finds the small hole, falls into it,

and then spirals its way downward along the sidewalls of the

trench through the hole until it reaches the bottom of the trench

(Figure 5E, purple arrow). This would represent the third and

the final stage of the self-organization. The shape of the bowl

and the location of the trench would be determined by the

parameters of the cellular dialogue.

In each of the five cellular dialogues that can yield dynamic

spatial patterns, we found that, for parameter values that enable

dynamic pattern formations, approximately 30% of the initially

disorganized spatial-configurations successfully self-organized

traveling waves (Figure 5F). Moreover, our simulations and the

analytical approach revealed that cells can have arbitrarily high

parameter values and still form traveling waves, as long as the

secretion rates and threshold concentrations are appropriately

tuned (Figures S6 and S8). Our analytical framework presents
(D) Fraction of simulations that form a dynamic pattern as a function of the devia

sponding digitally with an infinite Hill coefficient—inwhich the results for Figures 1,

to colored box in (A) that shows themodified element in the simulations. For each d

we varied the parameter controlling the deviation from our original model and cla

noise). All results here are for cellular dialogue 15.

(E) Fraction of simulations with cellular dialogue 15 that can sustain a traveling

parameter values for which the simulations with simpler elements (i.e., infinite Hi

See also Figures S11–S14.
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an optimization strategy for ensuring that cells form traveling

waves for the largest possible set of parameter values (Fig-

ure S9). This strategy depends on balancing how much a cell

communicates with itself by capturing back the molecules that

it had just secreted (self-communication) with how much a cell

communicates with the other cells by sending its secreted

molecules to them (neighbor-communication). In short, we found

that when the cells are sparsely packed, there is not enough

neighbor communication for sustaining traveling waves. On the

other hand, when the cells are densely packed, then cells cannot

cycle through a set of gene expression states—a requirement

for dynamic patterns such as waves - because the signalingmol-

ecules quickly reach saturating concentrations rather than un-

dergoing the necessary cycles of decreases and increases.

This leaves us with intermediate, ‘‘goldilocks’’ density of cells

as being ideal for forming and sustaining waves and dynamic

spatial patterns (Figure S9B). Furthermore, for all five cellular di-

alogues, we discovered that the probability of forming a traveling

wave at a given time is well described by an exponential distribu-

tion (Figures 5G and S10A), with a characteristic decay time of

thousands of time steps (i.e., tens of hours if one time step is

1 min). This strongly suggests that traveling wave formation is

a memoryless process whereby at each time step, the probabil-

ity that the next time step yields a traveling wave remains the

same regardless of at which time step the simulation is. This re-

flects the fact that watching the simulations that yield a dynamic

spatial pattern does not give the observer a sense that the

cells are getting anywhere closer to forming a dynamic spatial

pattern as time passes (Figures S10B–S10D).

Dynamic Patterns with More Complex Elements
We next extended our investigation by relaxing the two main

constraints in the simulations—having an infinite Hill coefficient

and cells on a regular lattice. We modified the simulations by

separately adding four elements (Figure 6A; STAR Methods):

(1) stochastic response to the signaling molecules (Figure 6A,

top left), (2) a sigmoidal response function characterized by a

finite Hill coefficient (i.e., cells no longer digitally respond to the

signaling molecules) (Figure 6A, top right), (3) randomized loca-

tions of cells instead of each cell residing on a regular lattice (Fig-

ure 6A, bottom left), and (4) random (diffusive) motion of each cell

(Figure 6A, bottom right). We tuned each element and asked

two questions: (1) can the cells still form traveling waves if they

start with a completely disordered spatial configuration? (Fig-

ure 6B, top)—this probes the self-organization capability—and

(2) can the cells still sustain traveling waves after forming

them? (Figure 6B, bottom) —this investigates whether dynamic

spatial patterns can be sustained once formed. In general, we

found that cells could still form a wide range of dynamic spatial

patterns with the four additional elements (Figure 6C). For
tion from the more idealized setting—cells placed on a regular lattice and re-

2, 3, 4, and 5were reported. Four colored boxes with each color corresponding

ata point, we ran a large set of simulationswith a fixed set of initial conditions as

ssified their final states (see Figure S11 for details on finite Hill coefficient and

wave for at least one full period after starting with a traveling wave. We took

ll coefficient and cells on a regular lattice) can propagate traveling waves.



example, we discovered that cells under the influence of a mod-

erate noise could form a band that travels as a wave despite a

number of cells stochastically obtaining the ‘‘wrong’’ (incoherent)

gene expression state. In this case, the wave, thus, propagates

while stochastically evolving (Figure 6C, top left; Video S6). As

another example, we discovered that even when we randomly

arrange cells in space, instead of on a regular lattice, the cells

could still form never-ending, complex wavelets (Figure 6C, bot-

tom left; Video S7).

By running many simulations for each of the four complex

elements, we discovered that the dynamic spatial patterns that

we previously observed, on a regular lattice with an infinite Hill

coefficient (Figure 2), still formed as long as the amount of the

deviation introduced by the four elements, relative to the regular-

ity of the lattice and the infinite Hill coefficient, was non-negligible

but not too large (Figure 6D). For instance, we found that, with

a moderate noise, dynamic spatial patterns continued to form

and persist (Figures 6D, 6E, top left, and S11). The probability

that an initially disordered configuration morphed into a trav-

eling wave became higher with moderate noise, compared to

not having any or low noise, indicating that noise can drive the

system toward more ordered states—a phenomenon also

observed for static patterns in an earlier work (Olimpio et al.,

2018). To account for this observation, we extended our theory,

which we developed for explaining wave propagation without

noise (Figures 4A–4C), to now include noisy gene expression.

Using this extended theory, we calculated the probability that a

wave, after forming, ‘‘survives’’ for a given amount of time. This

probability closely matched the actual fraction of simulations in

which waves survived (Figure S12 and Supplemental Analysis

Section S4). The theory also let us calculate, for each of the

five cellular dialogues that can form dynamic spatial patterns,

how much noise there must be to prevent waves from forming

(see Supplemental Analysis Section S4).

By varying the Hill coefficient over a wide range, we discov-

ered that dynamic patterns can form for finite Hill coefficients

of values�4 or higher (Figures 6D, top right, and S11). However,

these did not typically include ‘‘pure’’ traveling waves that neatly

decompose into the previously identified layers. Moreover, an

already-formed traveling wave—as in the case of a simulation

that starts with a wave—could persist for Hill coefficients of

values down to �3 (Figure 6E, top right). These results indicate

that a finite Hill coefficient is mainly detrimental to the self-orga-

nization of traveling waves whereas it is less detrimental to the

cells’ ability to sustain a traveling wave once it is formed. With

a Monte Carlo algorithm that randomly displaces the cells and

quantifies the amount of resulting ‘‘lattice disorder’’ (see STAR

Methods), we found that dynamic spatial patterns still formed

and persisted evenwith a high degree of spatial disorder (Figures

6D, 6E, bottom left, and S6). Even with saturating amounts of

spatial disorder, we still observed self-organized wavelets

that propagated, albeit with a lesser degree of regularity than

in a regular lattice (Figure 6C, bottom left). When we allowed

the cells to diffusively move—we tuned the cells’ motility by ad-

justing the diffusivity of their Brownian motion (see STAR

Methods)—we found that large-scale, uncoordinated motion of

the cells prevented any kind of dynamic spatial patterns from

stably propagating, as large variations between the local envi-

ronments of individual cells tended to diminish the cells’ ability
to spatially propagate information (Figure 6D, bottom right).

However, we found that motile cells could still propagate

waves, once formed, for an extended amount of time before

the wave disintegrated even when the cells had a high degree

of diffusive motion (Figure 6E, bottom right). Together, these re-

sults strongly suggest that diffusively moving cells can sustain

traveling waves as long as the waves travel sufficiently rapidly

(i.e., compared to the cells’ average speed).

We also studied three more complex elements. First, we

considered the influence of a spatial gradient of parameter

values on traveling-wave formation (see STAR Methods). Re-

searchers have suggested that spatial gradients of parameter

values can influence the orientation of Turing patterns such as

stripes (Hiscock and Megason, 2015). Similarly, we observed

that a spatially varying parameter, having a simple step-function

profile over space, can influence the direction in which the trav-

eling waves moved after forming: the waves tended to align

perpendicularly to the gradient (Figure S11). Second, whereas

until now the cells integrated the two signals with an AND-logic

scheme—both molecules were required for activating or repres-

sing gene expression—we repeated the computational search

(Figure 1D) but now with an OR-logic scheme in which only

one of the molecules is required for activation or repression of

a gene (see STARMethods). We found that the OR-logic scheme

yields exactly the same groupings of cellular dialogues as in the

AND-logic scheme in terms of the three classes of patterns that

they generate—static, dynamic temporal, and dynamic spatial

patterns (Figure S13 and Video S8). But we discovered that the

OR-logic scheme produces a different ‘‘wave structure’’ (Fig-

ure 4D) than the AND-logic scheme (Figure S13). Finally, we per-

formed simulations in which we disrupted the individual cell’s

gene expression to check whether traveling waves could still

form and propagate. Experimentally, one can perturb individual

cells this waywith optogenetics. Ourmain finding is that traveling

waves can still form and continue to propagate as long aswe dis-

rupted sufficiently low numbers of cells (e.g., up to�20 cells in a

field of �200 cells) (Figure S14).

DISCUSSION

The dynamic-pattern-forming cellular dialogues that we identi-

fied include some that have been experimentally observed to

yield patterns. They all have interlocked positive and negative

feedbacks (Figure 3D). Researchers have found that, without

any cell-cell communication, such interlocked feedbacks can

cause gene expression levels to robustly oscillate temporally

(Stricker et al., 2008; Tsai et al., 2008; Li et al., 2017). Re-

searchers have also synthetically engineered a quorum-sensing

gene circuit resembling cellular dialogue 20 (Figure 3D) and

observed that the cells’ gene expression levels synchronously

oscillate over time and, under certain conditions, spontaneously

form traveling waves (Danino et al., 2010). More generally, the

activator-inhibitor structure of cellular dialogue 15 is qualitatively

similar to the structure of the FitzHugh–Nagumo (FHN) model,

which describes excitable systems such as cells whose biomol-

ecule concentrations oscillate over time and/or form traveling

waves (Gelens et al., 2014; Sgro et al., 2015; Hubaud et al.,

2017). Cellular dialogue 15 has an activating molecule that pro-

motes its own production and an indirect negative feedback
Cell Systems 10, 82–98, January 22, 2020 95
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Figure 7. Self-Organized Dynamic-Pattern-

Forming Systems with Poorly Understood

Interactions that Our Software and Analytic

Framework May Help in Elucidating

(A–D) Biological systems with two or more inter-

acting pathways that generate spatiotemporal

patterns but whose exact mechanisms and

cellular dialogues remain poorly understood. (A)

During somitogenesis, a wave of gene expression

states propagates along the anterior-posterior

axis of an elongating, pre-somite mesoderm. The

conventional view is that this wave is mediated by

a coupling between individual oscillators—oscil-

lations in expression levels of Wnt, Notch, and Fgf

and/or by large-scale gradients in the gene

expression levels for those molecules. But how

Notch regulates Wnt and vice versa remains

questionable while Hes7 is known to mediate the

Fgf-Notch interaction (Sonnen et al., 2018). Fig-

ure partially adapted from (Oates et al., 2012). (B)

Waves of b-catenin (green ring) and Smad2 (red

ring) expression levels propagate in a field of stem

cells. Although we know that these waves form

because of BMP inducing b-catenin (part of the

Wnt pathway) and SMAD2 (part of the NODAL

pathway), how exactly these two inductions occur

remains poorly understood (Chhabra et al., 2019).

(C) The circadian clocks of each cell within the leaf

of Arabidoposis thaliana are thought to be coupled

to each other through an as-yet-unknown mech-

anism, which is suspected to involve a variety of

hormones, sugars, mRNAs, and other molecules

(Greenwood et al., 2019). (D) A planarian re-

generates itself after being cut into two or more

pieces. This is thought to rely on mutual antago-

nism between gradients of Wnt expression

(purple) and of an as-yet-unidentified molecule

(yellow) (St€uckemann et al., 2017). Figure partially

adapted from (St€uckemann et al., 2017).
through the second molecule. This indirect negative feedback is

analogous to the slow repression in the FHNmodel. Similarly, the

interlocked positive-negative feedback loops of the dynamic-

pattern-forming cellular dialogues resemble the activator-inhibi-

tor systems that generate Turing patterns (Kondo and Miura,

2010) and resemble the two-gene networks that can generate

Turing patterns (Scholes et al., 2019). But the cells in our simula-

tions do not generate Turing patterns such as stripes or spots of

fixed sizes, likely due the large separation of timescales between

molecular and gene expression dynamics in our simulations.

Here, we focused on cellular dialogues with two molecules

and the two genes that they control. But our software can easily

be modified to include multiple—more than two—extracellular
96 Cell Systems 10, 82–98, January 22, 2020
r-

ct

ry

g-

ng

ng

er

n-

a,

by

ia-

se

ls,
molecules and genes as well as arbitrary

regulations of those genes (as show-

cased by our inclusion of finite Hill coeffi-

cients). Such extensions would allow one

to explore more complex ways that

cellular dialogues can mediate dynamic-

pattern formations. These extensions,

our analytical method for analyzing the

simulations, and our results on two-mole-
cule cellular dialogues may provide insights on poorly unde

stood systems in which multiple signaling molecules intera

with each other. For many biological systems, the regulato

links among the various molecular players remain unknown (Fi

ure 7). For example, researchers have found that three signali

molecules—Fgf, Notch, and Wnt—regulate one another duri

somite formations. But how Wnt and Notch regulate each oth

so that their levels coordinately oscillate over time remains u

known (Figure 7A) (Oates et al., 2012; Harima and Kageyam

2013; Sonnen et al., 2018). One may address this question

modifying our software to include three-molecule cellular d

logues and then applying our analysis method to analyze tho

simulations. Doing so may also help in identifying, in stem cel



the as-yet-unknown regulatory links among Bmp, Wnt, and

Nodal that lead to self-organized spatiotemporal waves (Fig-

ure 7B) (Chhabra et al., 2019). In the Arabidopsis thaliana leaves,

the circadian clocks of individual cells may be synchronized

through self-organized traveling waves (Wenden et al., 2012;

Gould et al., 2018) (Figure 7C). While these waves are known

to occur through interactions between cells on a regular lattice,

the exact interaction mechanism remains unknown (Greenwood

et al., 2019). Finally, in planaria—flatworms that regenerate their

bodies after they are cut into pieces—a self-organized Wnt

gradient specifies where the tail reforms after it is cut. Re-

searchers believe that an as-yet-unidentified signaling molecule

may interact with Wnt in a mutually antagonistic way to indicate

where the head should reform after it is excised (Figure 7D)

(St€uckemann et al., 2017). Thus, our results on two-molecule

cellular dialogues may provide insights into this system.

Our work revealed that complex, erratic dynamics is integral to

the cellular dialogues enabling dynamic spatial patterns. Re-

searchers have experimentally observed irregular, complex

heart beats during ventricular fibrillations (Ten Tusscher and

Panfilov, 2006;Qu et al., 2014) and turbulent flows of cytoskeletal

fluids (Giomi, 2015) and fluids of Min proteins (MinC, MinD, and

MinE) from E. coli lysates that form patterns on a petri dish (Ha-

latek and Frey, 2018). Our work expands this repertoire to include

pattern formations through cellular dialogues. Such complex

spatial-patterning dynamics may be difficult to observe in exper-

iments because genetic or developmental programs might be

triggered and ‘‘take over’’ the pattern-forming dynamics before

the cells had enough time to exhibit the kind of prolonged, erratic

dynamics that we uncovered here. For example, before a pattern

finalizes, some of the cells in the tissue or an embryo may turn on

a different developmental program such as those that lead to

cavitation in parts of the tissue or some of the cells to collectively

migrate. Consequently, cells may not have the time to exhibit

the prolonged complex dynamics for a sufficiently long enough

time for us to experimentally distinguish it from a short-lived,

transient dynamics. Moreover, another experimental challenge

to observing the prolonged complex dynamics is that one must

measure gene expression levels of every cell in a tissue or an em-

bryo with sufficiently high temporal and spatial resolutions and

do so continuously for a sufficiently long time. With these diffi-

culties in mind, a plate of natural or synthetic cells that use

two-molecule cellular dialogues—rather than a full embryo—

may allow us to fully observe the complex dynamics using

time-lapse microscopy. It may also be interesting to interpret

and analyze our work in the context of complex systems theory

(Bar-Yam, 2003). Doing so may link our findings to those of

non-living chemical systems that self-organize patterns (Nicolis

and Prigogine, 1977).

Key Changes Prompted by Reviewer Comments
In response to the reviewers’ comments, we lightly modified the

main and supplementary figures to stress the main message

contained in them. Although the reviewers did not ask for more

work, we added six new supplemental figures to further clarify

and support the message that was contained in the original

figures. We also added a paragraph in the Discussion section

to describe the experimental challenges that one faces in

observing the prolonged, erratic self-organization dynamics.
For context, the complete Transparent Peer Review Record is

included within the Supplemental Information.
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METHOD DETAILS

Detailed Description of Our Model
In this section, we provide a detailed description of a generalized version of our model, which one can apply to an arbitrary number of

diffusing molecules that cells secrete and sense. Our aim here is to concisely summarize the model. For motivations behind the as-

sumptions of our model, please see the main text and our earlier studies (Maire and Youk, 2015a; Olimpio et al., 2018).

We consider N cells that communicate through l distinct, diffusing signaling-molecules that the cells secrete and sense. We first

consider cells that are placed on a triangular lattice such that each cell has six nearest neighbors, each at a distance of a0. We specify

the state of the system - a "system state" - by

XðtÞ= fXkðtÞgNk = 1
, where Xk = ðXðiÞ

k ;.;X
ðlÞ
k Þ is the state of cell k, which we call a "cell state" for cell k. In our description below, we will

distinguish between the system state X and the cell state of cell k, Xk .

Suppose that cell k secretes a signaling molecule i (1%i%l) at a rateC
ðiÞ
k , which is bounded below and above as:C

ðiÞ
OFF%C

ðiÞ
k %C

ðiÞ
ON.

Note that we allow for the possibility that the lower and upper bounds on the secretion rate can be different for each signaling

molecule. The secretion rate is related to the cell state through the relation

CðiÞ�XðiÞ
k

�
h
�
C

ðiÞ
ON �C

ðiÞ
OFF

�
X

ðiÞ
k +C

ðiÞ
OFF :

In the simplest scenario, the cells secrete signalingmolecules at a rate which is either low or high. In this case, each of the X
ðiÞ
k takes

binary values - 0 or 1 - such that CðiÞðXðiÞ
k = 1Þ = C

ðiÞ
ON and CðiÞðXðiÞ

k = 0Þ=C
ðiÞ
OFF . Alternatively, the secretion rate could take continuous

values within the closed interval ½CðiÞ
OFF ;C

ðiÞ
ON�. If so, then the cell states are continuous variables (i.e., X

ðiÞ
k can take any value between

0 and 1. For convenience, we setC
ðiÞ
OFF = 1 for all i and measure all concentrations in units of this OFF-secretion rate (which we take to

be equal for all molecules, unless we state otherwise).

The concentration of a signaling molecule, once it reaches a steady state, decays with distance from the cell that is secreting it as

follows (Olimpio et al., 2018):

cðiÞðrÞ = C
ðiÞ
k f ðiÞðrÞ;
ðiÞ �

f ðiÞðrÞ = l

r
exp

Rcell � r

lðiÞ

�
sinh

�
Rcell

lðiÞ

�
:

Here we assumed that the cells are spherical with radius Rcellhrcella0 and lðiÞ is the diffusion length of signaling molecule i. The

diffusion length measures how far the molecule can typically travel before degrading and is set by the molecule’s diffusion constant

and degradation rate (Olimpio et al., 2018). Here, we also introduced an ‘‘interaction function’’ function f ðiÞðrÞ to capture the distance-

dependent decay. Note thatC
ðiÞ
ON and C

ðiÞ
OFF are effective secretion rates for ON- andOFF-cells respectively that lump together several

terms which appear in the reaction-diffusion equation for molecule i. They can depend on the diffusion lengths lðiÞ. But we will

consider them to be independent of the diffusion lengths by assuming thatC
ðiÞ
ON and C

ðiÞ
OFF remain constant as we change lðiÞ by tuning
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other parameters whichwe do not specify here for brevity. We can reduce the number of parameters by expressing all lengths in units

of lattice spacing, a0. We define lðiÞhðlðiÞ=a0Þ and rewrite the interaction function as

f ðiÞðrÞ = 1

r
exp

�
rcell � r

lðiÞ

�
sinh

�
rcell
lðiÞ

�

where we introduced rhðr=a0Þ. Here, rcellhRcell=a0 is the radius of a cell expressed in units of the lattice spacing a0.

At any given time, the concentration that a cell senses is the sum of the concentrations due to each of the cells in the system. We

express the concentration of molecule i that a cell k senses as

Y
ðiÞ
k =

XN
m= 1

f
ðiÞ
kmC

ðiÞ
m ;

where f
ðiÞ
km is a distance-dependent interaction strength between cells k and m. Explicitly, we have

f
ðiÞ
kmh

�
f ðiÞðrkmÞ; ðks mÞ
1; ðk =mÞ ;

with rkm being the distance between cells k and m and f ðiÞðrÞ as defined above.

For later reference, we introduce an "interaction strength" f
ðiÞ
N for each signaling molecule i:

f
ðiÞ
N =

X
ms k

f
ðiÞ
km:

Note that if all cells secrete at the same rate CðiÞ, then they would all sense the following concentration

Y ðiÞ =
�
1 + f

ðiÞ
N

�
CðiÞ:

Regulatory Interactions

We now consider how the sensing of one signaling molecule affects the secretion of itself and other molecules by a cell. Molecule j

can affect the secretion of signaling molecule i in three distinct ways (note that i can be equal to j). First, molecule j may activate

secretion of molecule i, meaning that a higher concentration of j leads to a higher secretion rate of i. Secondly, molecule j may

repress secretion of molecule i, meaning that a higher concentration of j leads to a lower secretion rate of i. Finally, molecule j

may not influence the secretion rate of molecule i at all. We can capture these three possibilities by an ‘‘interaction matrix’’ Mint,

defined as

M
ðijÞ
int = fðxÞ=

8<
:

1; j activates i
�1; j represses i
0; no interaction

The interaction matrix allows us to define a ‘‘cellular dialogue’’ as a directed (multi)graph in which each node represents one of the l

signaling molecules and each directed edge represents onemolecule (node) controlling the secretion rate of either itself (self-loop) or

another molecule (directed edge from one node to another) as dictated by the interaction matrix.

A cell may respond in one of multiple possible ways to the sensed concentrations of all the signaling molecules. Its biochem-

ical circuitry sets its response. Here we consider a relatively simple case in which the cell senses the extracellular signaling mol-

ecules and then uses one of two standard logic gates – AND and OR gates – to integrate the signals triggered by the sensed

molecules to regulate the genes that encode each of the signaling molecules. These gates apply to cells with infinite and finite

Hill coefficients (i.e., cell’s response is not necessarily binary for either logic gates). First, let us consider a cell that uses an AND-

gate to integrate the intracellular signals triggered by the sensing of two signaling molecules. For two signaling molecules that

activate the secretion of each other, one way to achieve an AND-gate is having two transcription factors – one for each signaling

molecule – both needing to bind to the promoter of the gene that encodes the signaling molecules. One of the two transcription

factors alone binding to the promoter would be insufficient for activating expression of – and thus secretion of - any of the

signaling molecules. Only when both transcription factors are bound to the same promoter, their cooperative interactions would

induce the expression and secretion of the signaling molecule that the gene encodes (Buchler et al., 2003). This scenario leads

to a multiplicative update rule for our model. Namely, we determine the cell’s secretion rate at the next time step in the cellular

automaton by multiplying several mathematical functions – one for each transcription factor – with each function describing the

bound fraction of a given transcription factor. Alternatively, a cell may use an OR-gate to regulate genes that encode the two

signaling molecules. Here, either of two transcription factors can induce transcription, without the need for both transcription

factors to be present. In practice, this can be realized by placing strong binding sites for both molecules at a considerable

distance apart, so that the two transcription factors can individually bind to the promoter and recruit RNA polymerases (Buchler

et al., 2003).
e2 Cell Systems 10, 82–98.e1–e7, January 22, 2020



Mathematically, let gðijÞðXÞ be the result of the regulation of the gene that encodes molecule i by molecule j, given a system state X.

If gðijÞðXÞ= 1, then the gene is activated or unrepressed, whereas gðijÞðXÞ= 0 means that the gene is either un-activated or repressed.

The specific mathematical form of gðijÞðXÞ depends on the regulatory interaction. As a general form, we can write it as

gðijÞðXðtÞÞ = q
��
Y

ðjÞ
k �KðijÞ �MðijÞ

int

�
;

where qðxÞ =

�
1; x>0
0; x<0

is the step function. The value of qð0Þ is unspecified, but to be consistent with the case of not having a reg-

ulatory interaction (M
ðijÞ
int = 0), we set qð0Þ= 1 for the AND-logic and qð0Þ= 0 for the OR-logic. Using the standard syntax of Boolean

algebra, we can denote the AND-operation as ^ and the OR-operation as n. Then, using arithmetic representation of logic gates,

we have x^y = xy and

xny = x + y� xy. Hence, a cell’s response with an AND-gate takes the form

X
ðiÞ
k ðt + 1Þ = g

ði1Þ
k ðXðtÞÞ^gði2Þ

k ðXðtÞÞ=g
ði1Þ
k ðXðtÞÞgði2Þ

k ðXðtÞÞ;
and a cell’s response with an OR-gate takes the form

X
ðiÞ
k ðt + 1Þ = g

ði1Þ
k ðXðtÞÞngi2

k ðXðtÞÞ= g
ði1Þ
k ðXðtÞÞ+g

ði2Þ
k ðXðtÞÞ � g

ði1Þ
k ðXðtÞÞgði2Þ

k ðXðtÞÞ;
Wecan readily generalize these expressions to cells withmore than two signalingmolecules by using the standard rules of Boolean

algebra.

Steady States of the System

For regulatory interactions with infinite Hill coefficients, each cell has one of two states for each signaling molecule – OFF (i.e., basally

secreting themolecule) andON (i.e., maximally secreting themolecule). Hence, if the system has a total ofN cells, the total number of

possible gene-expression states for the population is finite (2N), meaning that the system (i.e., population) is bound to eventually

reach one of two types of steady states in terms of the population-level gene-expression:

1. Stationary steady-state: There is a time t� such that for all tRt�, the system does not change any more (i.e., Xðt + 1Þ= XðtÞ).
Simply put, this means that the population-level gene-expression state remains constant starting at time t�.

2. Periodic steady-state: There exists a time t� after which we have Xðt + tÞ=XðtÞ for all tRt�. Then t is the period of the periodic

steady-state. Simply put, this means that the population-level gene-expression state undergoes a periodic oscillation with a

period t.

The t� - which we will call equilibration time - is the time that the system takes to reach either one of the two types of steady states.

For stationary steady-states, this is simply the first time when the system reaches a state that does not change over time any more.

For periodic steady-states, we define the equilibration time when the onset of the periodicity occurs.

Enumerating Cellular Dialogues

If we have two signaling molecules, there are four possible interactions between those two molecules. Each interaction can be either

activating, repressing or absent. Hence twomolecules can form a total of 34 = 81 possible cellular dialogues. However, many of these

cellular dialogues are equivalent to one another because swapping the labels "1" and "2" on the twomolecules (Figure 1C) conserves

the topology of the graphs that represent the cellular dialogues (i.e., whichmolecule is labeled "1" or "2" is arbitrary). Under this label-

swapping operation, the interaction matrix becomes 
M

ð11Þ
int M

ð12Þ
int

M
ð21Þ
int M

ð22Þ
int

!
1

 
M

ð22Þ
int M

ð21Þ
int

M
ð12Þ
int M

ð11Þ
int

!
:

Hence, for cellular dialogues that are invariant under the label-swapping operation, we must have M
ð11Þ
int =M

ð22Þ
int and M

ð12Þ
int = M

ð21Þ
int ,

leaving uswith two independent elements in the interactionmatrix. Each of these two elements can have one of three possible values.

Thus, the cellular dialogues that are invariant under the label-swapping operation reduce down to a set of 9 distinct cellular dialogues.

We can reduce the remaining 72 cellular dialogues to a set of 36 unique cellular dialogues. Hence, we have total of 45 distinct cellular

dialogues. After neglecting the trivial cellular dialogues - those in which neither of the two molecules regulates the other - we obtain

the set of 44 cellular dialogues that are shown in Figure 3. Note that we also enumerate all cellular dialogues in which a molecule

regulates itself but does not regulate the other molecule.

Population-Level Description

To characterize the population-level behavior without focusing on the state of every single cell, we introduce "macroscopic vari-

ables". Specifically, we define two macroscopic variables for each molecule, leading to a total of four macroscopic variables for a

population. One of them is the average expression level of the gene that encodes molecule i which, in the case of the digital cells,

is equal to the fraction of cells that have gene i turned on:

pðiÞ =
1

N

XN
k = 1

X
ðiÞ
k :
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The other macroscopic variable is the "spatial index" for gene i, which characterizes how spatially correlated the expression levels

for gene i is among the cells. We first introduced this in earlier studies (Maire and Youk, 2015a; Olimpio et al., 2018) andwe nowdefine

it for a population with multiple signaling molecules as follows:

IðiÞ =
1P

nsmf
ðiÞ
mn

P
m

P
nsmf

ðiÞ
mn

�
XðiÞ

m � CXðiÞD
��
XðiÞ

n � CXðiÞD
�

1
N

PN
m= 1

�
XðiÞ

m � XðiÞ�2 ;

The spatial index for gene i, IðiÞ, quantifies how spatially ordered the cells are in terms of their expression level for gene i. It can have

a value between -1 and 1, with negative values indicating that neighboring cells tend to have different gene-expression levels (such as

in checkerboard patterns or anti-ferromagnetism in spin models) and positive values indicating that neighboring cells that tend

to have similar gene-expression levels (forming islands with the same gene expression level, similar to ferromagnetism). When

IðiÞ = 0, the cells’ expression levels of gene i are, on average, uncorrelated. In the case of spatially ordered patterns such as traveling

waves, the values of IðiÞ are positive and relatively high, with exact values depending on the parameters of the system and the

wave’s shape.

Together, the set of macroscopic variables fpðiÞ; IðiÞgli = 1 - for l signaling molecules (we considered l = 2 here) - convey population-

level information. However, this description does not contain information about correlations between different genes. For example,

we may specify, for two-molecule cellular dialogues, that pð1Þ =pð2Þ = 0:5 and Ið1Þ = Ið2Þ = 0:5. This tells us that half of the genes of each

type are turned on and that the cells which have a certain gene on will tend to cluster with other cells that have the same gene turned

on. However, we cannot infer whether a cell that has gene 1 turned on is likely to have gene 2 turned on as well or whether its neigh-

bors tend to have gene 2 turned on. There are different ways to consider metrics that also consider such cross-correlations. For

example, we can group together cells with each of the four cell states (i.e., (gene 1=ON, gene 2=ON), (ON, OFF), (OFF, ON), (OFF,

OFF)) and study the evolution of these populations. However, the disadvantage of this approach is that it does not easily generalize

to continuous gene-expression states that we also consider in our work (i.e., for gene regulations with finite Hill coefficients). Alter-

natively, we can use established statistical metrics for correlations between two sets of values (i.e., gene-expression levels for the two

different genes) such as theHamming distance, the Jaccard index (JI) and the Sørensen-Dice coefficient. As we aremainly interested

in knowing whether a spatial configuration is ordered or disordered (i.e., whether the cells have an "interesting" pattern or not), we

have not studied such cross-correlations. Nevertheless, our open-source software, MultiCellSim, computes the cross-correlation

along with pðiÞ and IðiÞ.
Moving Averages

We calculated the Fano factor - variance divided by the mean - for eachmacroscopic variable in Figures 5C and S7 by using a sliding

time-window of 10 timesteps (i.e., for a macroscopic variable y(t), we compute its mean and variance for values of twithin the interval

(t, t+10)). Specifically, we calculated amoving variance using theMATLAB function ttmovvar and themovingmean using ttmovmean.

The Fano factor represents a signal-to-noise ratio within a given time-window frame.

Simulation and Analysis of the Model
In this section, we provide a concise overview of our simulations and analyses.

Fixing Initial Conditions

We started simulations by generating a randomly chosen, initial spatial-configuration that is subject to certain constraints. Unless we

chose pðiÞ and IðiÞ to each have a specific value at the beginning of a simulation, we let each cell to have a 50%chance of having gene i

be ON. This tends to generate spatial configurations in which half of the cells have gene i turned on. In some cases, we chose pðiÞ and
IðiÞ to each have a specific value at the beginning of a simulation (Figure S6). Here, we fixed the value of pðiÞ by randomly selecting this

fraction of cells, for which we turn on gene i. To fix the value of IðiÞ, we used a Monte Carlo algorithm outlined below.

Algorithm for Generating Spatial Configurations with a Given Spatial Index

We devised an algorithm that generated spatial configurations, for initializing our simulations, with specified values for the spatial

index IðiÞ and pðiÞ. Our algorithmwasmotivated by a similar problem in physics - a problem on Ising spin systems - in which one needs

to fix the total energy of the spins (analogous to IðiÞ) without changing the average magnetization (analogous to pðiÞ). Our algorithm is

illustrated in Figure S1 and is as follows:

1. Given a spatial configuration with a given value of p, start by computing the value of the I for this configuration

2. Check whether we should increase or decrease I by comparing it to the target value Itarget
3. If I<Itarget
e4
a) Select the ON-cell with the minimum number of neighbors which are also ON. Turn this cell OFF.

b) Select the OFF-cell with the maximum number of neighbors which are also OFF. Turn this cell ON.

4. Else if I>Itarget
a) Select the ON-cell with the maximum number of neighbors which are also ON. Turn this cell OFF.

b) Select the OFF-cell with the minimum number of neighbors which are also OFF. Turn this cell ON.

5. Compute the spatial index of the new configuration, Inew. Check whether it has increased or decreased as required.

6. If it has changed as required, accept the change. Go to step 8.

7. Else, reject the new configuration. Go to step 1.
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8. If Inew˛½Itarget � 3; Itarget + 3�, terminate the simulation.

9. Else, go to step 1 with the new configuration with I= Inew.

Because we switch the state of both an ON-cell and an OFF-cell, the average number of ON-cells remains constant. To increase I,

we choose cells that tend to have a different state frommost of their neighbors and change their state. To decrease I, we change cells

whose state are similar to that of their neighbors. Note that this algorithm is not guaranteed to converge to Itarget because at each

iteration of the loop outlined above, we are not guaranteed to increase or decrease I as required. In particular, if the specified value

of I is outside the range of possible values for I (Olimpio et al., 2018), the algorithm cannot reach the specified value of I. Therefore, we

typically set a limit on the maximum number of iterations before we terminate the algorithm. Finally, we typically set 3= 0:01, which

allowed for convergence at reasonable speeds while limiting deviations from the target value.

Terminating Simulations

As noted earlier, we terminate a simulation either when the population reaches a steady state or the simulation reaches themaximum

number of time steps tmax, which we arbitrarily set to be a sufficiently large number. As an example, we chose tmax = 105 for popu-

lations with N= 225 cells. At each time step, we checked for stationary steady-states by comparing the current system state with the

previous timestep’s system state. To check for periodic steady-states, one might resort to manually checking the system state at

every timestep to see whether the current state has been visited earlier. This becomes computationally infeasible for running

many simulations. So, we devised a more efficient scheme for detecting whether the simulation has entered a periodic steady-state.

Instead of checking at every timestep, at every tcheck timesteps we manually check whether the previous system state has been

visited earlier (we chose tcheck = 103). If we find periodicity in the system states, we ran a second algorithm to find the earliest time

at which any state has repeated itself, which told us when the periodic steady-state began.

Batch Simulations

Many of the results presented here are from batch simulations, which means that we performed a large set of simulations and ob-

tained statistics on variousmeasures. In many cases, we fixed all parameter values and only varied the initial spatial configuration. By

performing a large set of such simulations, we could distinguish whether an observed feature was a general feature for a particular set

of parameters or wasmerely an artifact of a specific initial spatial-configuration. We also ran many simulations, each time varying the

parameter values, to find features that were general for a large range of parameter values. Since the parameter values form a con-

tinuum, we could not simulate all possible parameter values and thus had to find a way to sample over the space of all parameter

values. Specifically, we employed Latin hypercube sampling (McKay et al., 1979), in which we efficiently sampled over amulti-dimen-

sional parameter space by taking parameter sets that were non-overlapping in any of the dimensions. We used this method to

generate a large set of conditions for each of the 44 distinct cellular dialogues that we computationally screened. The results in Fig-

ures 3, S4, and S13 used this approach. Specifically, to obtain these results, we defined a region in the parameter space in which we

varied the parameters KðijÞ and C
ðjÞ
ON over a range of values – ranging from 1 to 103 - while keeping all other parameters held fixed. We

sampled parameter values within this region by using the MATLAB function lhsdesign to generate a Latin hypercube sample with

10,000 points. We used this approach for each of the 44 cellular dialogues, with both the AND-logic (Figures 3 and S4) and the

OR-logic gate (Figure S13).

Identifying Traveling Waves

We devised an algorithm for automatically identifying traveling waves in large sets of simulations. Since traveling waves retain their

shape while propagating through space, the values of pðiÞ and IðiÞ would remain constant over time. Due to the periodic boundary

conditions that we used, having a traveling wave would mean that the system state returns to itself after n time steps, where n=ffiffiffiffi
N

p
and N is the total number of cells. Hence, we first screened through the simulations to find the ones that had a periodic

steady-state with a period that was a multiple of n – we looked for integer multiples of n since there may be more complicated waves

whose shapes slightly morph as they enter the edges of the field. We next checked whether pðiÞ and IðiÞ were (sufficiently) constant

over the course of one period. Using these two features, we could identify traveling waves in batch simulationswithout, by eye, exam-

ining the simulations explicitly one by one.We then extended the algorithm such that it also gave the orientation of thewave if the cells

indeed formed a traveling wave (see Figure S11C). We did so through a two-step procedure. First, we distinguished cells that formed

the ‘‘background’’ (exterior cells – Figure 4A) from the cells that formed the wave band (assuming that there were three states that

made up a wave – see Figure 4A). Then, we traced the cells from an arbitrarily chosen layer of the wave band to see whether they

percolate the system from one horizontal (vertical) edge to the other. If so, then we assigned a horizontal (vertical) orientation to

the wave. Else, we assigned a diagonal orientation to the wave.

Extending the Model by Adding Complex Elements
In this section, we discuss howwe extended our model by addingmore complex elements (Figure 6A). In themain text and Figures 6,

S11, and S12, we describe in detail how adding the four complex elements shown in Figure 6A affect the formation and propagation

of dynamic spatial-patterns. Below, we dedicate one section for each of these four complex elements as well as for another complex

element that is not shown in Figure 6 (i.e., spatial gradient of parameter values).

Stochastic Sensing and Response

There are various sources of stochasticity that can affect pattern formations. These include stochastic expression of the genes that

encode the signaling molecules and the fact that a cell cannot determine the concentration of the signaling molecules to an arbitrary

level of accuracy (i.e., the Berg-Purcell limit). We did not try to specify the exact source of noise. Instead, we modeled the cells’ noisy
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responses to the signalingmolecules by taking a phenomenological approach in which we lumped together various possible sources

of stochasticity into a single mathematical term. Specifically, based on our previous work (Olimpio et al., 2018), we let the threshold

concentration for how gene I is regulated by molecule j - denoted KðijÞ - to fluctuate from cell to cell and from time to time (Figure 5A –

top left). Mathematically, we can represent this fluctuation as

KðijÞ = K
ðijÞ
0 + dKðijÞ:

Here K
ðijÞ
0 is the threshold concentration for gene i being regulated by molecule j in the absence of any noise and

dKðijÞ � Nð0; aðijÞÞ is a normally distributed random variable. At each time step, we used above equation to update the threshold con-

centration KðijÞ; independently for each cell. In order to define a global noise-strength without introducingmany variables, we have let

aðijÞ =aK
ðijÞ
0 . In other words, a=aðijÞ=KðijÞ

0 was fixed for all interactions (i.e., for all pairs (i, j)), meaning that the variation in the threshold

concentration was proportional to the threshold concentration, with the same proportionality factor a used for every pair (i, j).

Continuous Cell-Response Function

In our model, we so far assumed that cells are binary and secrete signaling molecule I at either a low, basal rate C
ðiÞ
OFF or at a high,

maximal rate C
ðiÞ
ON. This is a valid assumption whenever the response function is sufficiently ultrasensitive, as discussed in the main

text. However, to treat more gradual response functions, we replaced the step-response function (i.e., infinite Hill coefficient) by a

continuous, Hill function with a finite Hill coefficient. The Hill coefficient quantifies the steepness of the Hill function. For simplicity,

we assumed that all molecules have the same Hill coefficient n. The update rule for the cells’ states is still the same as previous,

but now with

g
ðijÞ
k ðXðtÞÞ =

8>>>>>>>><
>>>>>>>>:

�
Y
ðjÞ
k

�n
�
Y
ðjÞ
k

�n
+
�
KðijÞ�n; j activates i

�
KðijÞ�n�

Y
ðjÞ
k

�n
+
�
KðijÞ�n; j represses i

1; no interaction

Note that theHill coefficient in ourmodel does not have a direct physical interpretation. Instead, it is a phenomenological parameter

that describes the steepness of the response function. This is because, in real cells, a ligand-bound receptor typically induces gene

expression through a complex signal-transduction cascade rather than through a single molecular process such as a binding of a

transcription factor at a promoter. As such, the Hill coefficient does not model any one specific biomolecular process. Therefore,

whereas in cooperative binding models, Hill coefficients less than one and larger than two are rare, our model allows for the Hill

coefficient to be arbitrarily high or low.

Disordered Cell Positions

In the previous sections, we considered cells to be on a triangular lattice. This is a fair representation of certain multicellular systems

(see Table S1 in Olimpio et al., 2018 for a list of examples). But in general, communicating cells do not need to be on a regular lattice.

To extend our model to account for alternative spatial arrangements of cells, we adapted our model to allow for randomization of the

cell positions through an algorithm adapted fromMarkov ChainMonte Carlo (MCMC) simulations of hard spheres (Krauth, 2006). The

algorithm allowed us to tune the degree of randomness of the cell positions, varying from a perfect lattice to a fully disordered

arrangement of cells. However, we still assumed that the cells are immobile or move at a much slower time scale than the time scale

involved in molecular/gene-expression changes.

Wemodeled the cells as 2D hard spheres with a radius ofRcell (identical for all cells). The cells were placed in such away that no two

cells overlapped. Initially, the cells were placed on a regular hexagonal lattice, with distance a0 between the cells. We selected a

random cell j with position xj = ðxð1Þj ; x
ð2Þ
j Þ. We then performed a Monte Carlo step, where we attempted to move the cell by a

displacement, xj/xj + dxj. Here dxj = ðdxð1Þj ; dx
ð2Þ
j Þ, with dx

ð1Þ
j ; dx

ð2Þ
j being two random variables that are independent of each other

and drawn from a uniform distribution on ½ � 3; 3�. If the cell did not overlap with any other cell at the new position, we accepted the

move. Otherwise, we rejected the move and a new move was proposed. To avoid repeated rejections, the cell radius and 3were

chosen to be sufficiently small. In all our simulations, we took Rcell = 0:2 a0 and 3= ða0 � 2RcellÞ=4= 0:15a0.

The number of Monte Carlo steps we performed using this algorithm is a measure for the degree of randomness in our cells’ po-

sitions. As a rough indication, for a system of N = 144 cells, after 100 Monte Carlo steps, the arrangement still appears to be very

similar to a minutely perturbed lattice. After 104 Monte Carlo steps, we observed that the cells were clearly not on a lattice anymore

and that distinct rows and columns of cells were still recognizable. After 105 Monte Carlo steps, we found that the arrangement of

cells looked similar to what one would obtain by randomly "dropping" cells onto a plane. We can make these statements more

precise by looking at the spatial distribution of cells surrounding each cell. Quantitatively, we now have a different interaction strength

f
ðiÞ
N for each cell in the system. As the cells become more randomly arranged, the distribution of the interaction strengths becomes

broader and the mean also increases. From these calculations, one can show for example, that after�105 Monte Carlo steps, a field

of N=144 cells obtains spatial configuration that is indistinguishable from that of a field of randomly placed cells.
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Cell Motility

We also extended our model to account for undirected, diffusive movements of the cells. Researchers have considered diffusive cell

motility as a stochastic process andmodeled it with the Langevin equation. They have applied this approach to treat fibroblasts (Dunn

and Brown, 1987), endothelial cells (Stokes et al., 1991) and granulocytes (Schienbein andGruler, 1993). More precisely, these earlier

studies have proposed that the underlying process is that of anOrnstein-Uhlenbeck process, in which cells randomly drift while expe-

riencing a restorative force - this force represents friction in a Brownian motion - which tends to bring the cells back to their original

positions. A previous work showed that one can represent the discrete time process that corresponds to this process with the

following equation (Dunn and Brown, 1987):

dxðtÞ = f dxðt� 1Þ+ hðtÞ+ q hðt� 1Þ;
where dxðtÞ= xðtÞ � xðt�1Þ is the displacement of a cell at time t, hðtÞ is a discrete random noise term with mean zero, and f and q

are real numbers that depend on the restorative force’s strength.

For our system, we took a simpler approach to model cell motility by neglecting the temporal correlations which arise in the fric-

tional term. Hence, we assumed that the cells drift around without one cell’s motion being correlated with another cell’s motion, as in

a classic random-walk and Wiener process. To model cell motility then, we used the same Monte Carlo algorithm that we used for

randomizing the cell positions but nowmove all cells at each time step instead of perturbing the initial positions for a fixed number of

cells. We defined the cell motility sD to be the width of the Gaussian term, in units of a0, describing the Brownian motion process

through which we update the cell positions. Explicitly, at each time step, we updated each of the N cells one by one through

xjðtÞ/xjðtÞ+ dxj; dxj � Nð0; sDa0Þ :
Here sD is a parameter that quantifies the extent of a cell’s motion in units of the lattice constant a0 (i.e., the distance between two

neighboring cells when placed on a regular lattice).

Spatial Gradient of Parameter Values

Studies of the Turing-patterning mechanism have revealed that a spatial gradient of production rates and other parameters as well

as more complex, spatially anisotropic parameter values can affect in which direction stripes become aligned after forming through

Turing instability (Hiscock and Megason, 2015). Motivated by this observation, we wondered whether spatial gradients of parameter

values can influence the direction in which waves would travel after forming in our system. To this end, we experimented with

applying spatial gradient of parameter values in various directions and for various parameters. As an example, cells at the top

edge may have a higher maximal secretion rate for molecule I than the cells at the bottom edge, with the maximal secretion rate

continuously changing as we traverse the field of cells row by row. Starting from a parameter set which is able to generate waves,

we modified one of the parameters P of a cell k to be position dependent:

PðxkÞ = ð1 + fðxkÞÞP0;

where xk = ðxð1Þk ; x
ð2Þ
k Þ is the position of cell k, fðxkÞ is a modulation term that adjusts the parameter PP, and P0 is a constant. The

simplest type of a spatial gradient that we could consider was a step function defined in either a horizontal or vertical direction (Fig-

ure S11C). For example, we could take a vertical gradient by defining fðxjÞ=Ay qðxð2Þj Þ, with a step function qðxÞ=
�

1; xR0
�1; x<0

(this

assumes that half of the cells are at xð2Þ > 0). We then quantified the sharpness of the gradient by a gradient-strength parameter Ay ,

which represents the fractional change in the value ofP on either side of the step. Note that with this gradient, the average value of the

parameter remains unchanged from cell to cell (i.e.,
P

j fðxjÞ= 0).

DATA AND CODE AVAILABILITY

The software with graphical user interface used to visualize simulations is available in the GitHub repository: https://github.com/

YitengDang/MultiCellSim. All codes that we used for simulations, analyses of results, and generating plots are available in the GitHub

repository: https://github.com/YitengDang/Cell_Systems_2019. All raw data used for the main figures are available at Dryad: https://

doi.org/10.5061/dryad.6hdr7sqw5
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