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Topological defects in flat nanomagnets: The magnetostatic limit
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We discuss elementary topological defects in soft magnetic nanoparticles in the thin-film geometry.
In the limit dominated by magnetostatic forces the low-energy defects are vortices �winding number
n= +1�, cross ties �n=−1�, and edge defects with n=−1/2. We obtain topological constraints on the
possible composition of domain walls. The simplest domain wall in this regime is composed of two
−1/2 edge defects and a vortex, in accordance with observations and numerics. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2168439�
Nanorings made out of a soft ferromagnetic material
generate considerable interest as prospective building blocks
for nonvolatile random-access memory.1 An attractive fea-
ture of the ring geometry is the existence of two lowest-
energy states in which magnetization points in the azimuthal
direction �clockwise or counterclockwise� preventing the
straying of magnetic field. The switching between the two
states can be accomplished by applying the magnetic field
in the plane of the ring or by injecting electric current. In
both cases the switching is accomplished by nucleating a
small bubble of the opposite domain and letting it expand
until it occupies the entire ring.2 Alternatively one can view
the process as the creation, propagation, and mutual annihi-
lation of two domain walls separating the domains with
clockwise and counterclockwise magnetizations. These con-
siderations motivate us to study the properties of domain
walls in nanorings.

Domain walls in magnetic nanoparticles differ substan-
tially from domain walls in macroscopically large magnets.
The main reason for that is the more prominent role of the
surface in smaller samples. Qualitative changes are expected
when one �or more� of the particle dimensions crosses a
length scale characterizing the strength of ferromagnetic ex-
change relative to that of the stray field, �=�A /�0M0

2, or
material anisotropy, �a=�A /K. Here A is the exchange con-
stant, M0 is the equilibrium magnetization, and K is the an-
isotropy constant of the material.3 The anisotropy scale �a is
particularly large in soft materials and can be considered
infinite for submicron particles. The exchange length � is in
the range of a few nanometers.

Previous experimental and numerical studies of domain
walls in submicron rings4 demonstrate that the ring curvature
does not have a significant impact on the properties of do-
main walls. We therefore discuss the simpler geometry of a
strip. Domain walls in strips were studied numerically by
McMichael and Donahue5 who found �at least� two different
types: “transverse walls” in extremely thin and narrow strips
and “vortex walls” in thicker and wider ones. Two of us6

have previously shown that the transverse walls are compos-
ite objects made of two elementary topological defects lo-
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cated at the opposite edges of the strip. In the limit of an
extremely thin and �reasonably� narrow strip, the energy of a
domain wall comes mostly from the exchange interaction, so
that the magnet is described by the two-dimensional XY
model with an anisotropy at the edge.7 In this limit, the el-
ementary topological defects are �a� vortices and antivortices
in the bulk of the strip carrying winding numbers of +1 and
−1, respectively, and �b� half vortices or “boundary
vortices,”7 confined to the edge and carrying fractional wind-
ing numbers of ±1/2. A transverse domain wall consists of
two half vortices with opposite winding numbers.6

In this paper and its companion8 we discuss the structure
and energetics of domain walls in the limit dominated by the
magnetostatic interaction, achieved in strips whose width
and thickness substantially exceed the exchange length �.
We demonstrate that the vortex walls observed in this limit
are also composite objects containing three elementary topo-
logical defects: a vortex �winding number of +1� residing
between two edge defects �winding number of −1/2�. The
identification of the elementary topological defects and im-
plications for the composition of domain walls is the subject
of this paper. The companion paper8 deals with the energetics
of composite domain walls.

Vortex walls are stabilized when both the width and
thickness of a strip substantially exceed the exchange length
�.5 In this limit the magnetostatic energy is the dominant
contribution to the energy of a domain wall9,10 and the pri-
mary force determining the shape of topological defects. Be-
cause the magnetostatic energy is a nonlocal functional of
magnetization,3 energy minimization is a computationally
difficult problem. Therefore identification of topological de-
fects is not as straightforward as in the limit dominated by
exchange.6 Furthermore, the magnetostatic energy has a
large number of absolute minima and one must search
among these solutions for one with the lowest exchange en-
ergy, making this a degenerate perturbation problem.

For simplicity we will use the geometry of a thin film
with a constant thickness t that is small in comparison to the
width of the strip w. In this case the shape anisotropy forces
the magnetization M to lie in the plane of the film �with the
possible exception of vortex cores11�. It will be further as-
sumed that the magnetization depends on the coordinates in

the plane of the film only,

© 2006 American Institute of Physics05-1

IP license or copyright, see http://jap.aip.org/jap/copyright.jsp

http://dx.doi.org/10.1063/1.2168439
http://dx.doi.org/10.1063/1.2168439


08Q505-2 Chern, Youk, and Tchernyshyov J. Appl. Phys. 99, 08Q505 �2006�
M = M�x,y� = �M0 cos �,M0 sin �,0� . �1�

For a given configuration of magnetization M�r� its
magnetostatic energy ��0 /2��H2dV can be recast as the
Coulomb energy of magnetic charges with density �m�r�
=−� ·M=M0�sin ��x�−cos ��y��. Being positive definite,
the magnetostatic energy has an absolute minimum of zero,
which corresponds to the complete absence of magnetic
charges. Thus it makes sense to look for low-energy states
with topological defects among configurations with zero
charge density in the bulk, −� ·M=0, and on the surfaces,
n̂ ·M=0 �here n̂ is the surface normal�. A method for con-
structing such solutions has been discussed by van den
Berg.12 It yields configurations with domains of smoothly
varying magnetization separated by discontinuities in the
form of Néel-type domain walls. The walls acquire a finite
width when the exchange interaction is taken into account.

The simplest nontrivial example is the configuration
with a single vortex at the origin, exp�i��x ,y��= ± i�x
+ iy� / �x+ iy�. The two signs give two different values of
chirality �direction of circulation� of the vortex. In both cases
the topological charge, or the winding number,13 is +1. This
solution has zero density of magnetic charge and thus mini-
mizes the magnetostatic term. Furthermore, it also represents
a local minimum of the exchange energy. Taken together,
these two observations show that the vortex is a stable con-
figuration. Its energy diverges logarithmically with the sys-
tem size R:

E+1 � 2�At log�R/�� + Ecore. �2�

In contrast, the antivortex configuration minimizing ex-
change energy, exp�i��x ,y��= ± i�x− iy� / �x− iy�, has a non-
zero density of magnetic charge and thus represents a poor
starting point for constructing a bulk topological defect with
the winding number of −1 in this limit. Minimization of the
magnetostatic energy in this topological sector is achieved in
the configuration known as the cross tie,14 an intersection of
two 90� Néel walls normal to each other �Fig. 1�. The energy
of an antivortex grows linearly with the length of the Néel
walls L emanating from it:

E−1 � �tL + Ecore �3�

�the core energy is generally different from that of a vortex�.
The surface tension of the wall � is determined by the com-
petition of exchange and magnetostatic forces. When the film
thickness t exceeds the Néel-wall width �of order ��, the
calculation simplifies: the magnetization depends only on the
coordinate transverse to the wall. The surface tension is then
found by minimizing the total energy per unit area,3

� =	 dx�A�d�/dx�2 + �0M0
2�cos � − cos �0�2/2� , �4�

subject to the boundary conditions ��±��= ±�0, where 2�0 is
the angle of spin rotation across the wall. Minimization of
the total energy yields a domain wall of a characteristic

�
width � 2/sin �0 with surface tension
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� = 2�2�sin �0 − �0 cos �0�A/� . �5�

In thinner films �t��� the magnetostatic term is nonlocal
3

FIG. 1. Top to bottom: a vortex, an antivortex, and a −1/2 edge defect in the
magnetostatic limit.
and the Néel walls acquire long tails.
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An edge defect6 with the winding number of −1/2 can
be constructed by placing the core of a cross tie at the edge
of the film, so that the magnetization along the edge is par-
allel to the boundary �Fig. 1�. As the core is circumvented
counterclockwise the magnetization rotates clockwise
through �, in agreement with the definition.6 The energy of
such a defect is also given by Eq. �3�.

We have not been able to find any configuration that
would contain a +1/2 edge defect and be free from magnetic
charges. It looks likely that the +1/2 defects carry a finite
amount of magnetic charge and thus have a substantially
higher magnetostatic energy than the other three types of
defects described above. This may indicate that, in the limit
where the magnetostatic energy dominates, a +1/2 defect
will decay into a vortex �n= +1� and an edge defect �n
=−1/2�. The +1/2 defects are stable in the exchange limit.6,7

The defects discussed in this paper determine the prop-
erties of domain walls in nanomagnetic strips. Postponing a
detailed discussion to the accompanying paper8 here we
make two general observations that place important con-
straints on the possible composition of a domain wall.

First, a domain wall in a strip must contain �at least� one
edge defect at each edge. This follows from the definition of
their winding numbers.6 Moving along the upper/lower edge
�Fig. 2� one finds that the magnetization rotates through the
angle −2�n1,2. In the presence of a domain wall, the edge
winding numbers n1 and n2 are half integers.

Second, the total topological charge of a domain wall,
including the winding numbers of the edges and the bulk,
must be zero. This can be seen by drawing a contour enclos-
ing the domain wall �Fig. 2� and noting that the total angle of
rotation along that contour −2�n1−2�n2 also equals 2�n,
where n is the winding number in the bulk. Hence n+n1

+n2=0.
Thus domain walls with the smallest number of defects

may contain �a� two edge defects with winding numbers of

FIG. 2. Determination of the topological charges at the edges and in the
bulk.
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+1/2 and −1/2 and no bulk defects, �b� two +1/2 edge de-
fects and one antivortex, and �c� two −1/2 edge defects and
one vortex. Case �a� corresponds to the transverse wall,
which is indeed the lowest-energy domain wall in the ex-
change limit.6 In the opposite magnetostatic limit one must
minimize the number of +1/2 edge defects �which have a
high magnetostatic energy�. Therefore it is reasonable to ex-
pect that the lowest-energy domain walls in this limit are of
type �c�. Both experimental observations4 and numerical
simulations5 are consistent with this proposition. See the
companion paper8 for details.

Much of the recent experimental effort in nanomag-
netism has been devoted to the study of vortices.11,15,16 Given
an equal �if not greater� importance of edge defects in deter-
mining the properties of domain walls, a careful examination
of topological defects at the edge is highly desired.
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