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ABSTRACT

The mass transfer of water molecules by diffusion onto ice particles is best described by their Sherwood
number (Sh), a dimensionless quantity, which combines molecular and convective effects and depends on
the airflow as represented by the Reynolds number (Re). While Sh (Re � 0) has been previously measured
in experiments for typical crystal shapes, the limiting case of pure molecular diffusion (Sh0) for zero flow
with Re � 0 is not known well and needs independent determination.

The direct numerical solution of the controlling Laplace equation links diffusion with electric fields
through the electrostatic analogy. It will be solved for the electrostatic potential V around a crystal-shaped
conductor of capacitance C. The results will then be converted by similarity theory. This led to the first
numerical determination of Sh0 for hexagonal plates, hexagonal columns, stellar crystals, capped columns,
and broad-branched crystals. The new data represent another necessary step in the formulation of an
experiment-based theory of the growth of freely falling ice crystals in the atmosphere.

A discrete version of Gauss’s flux law is developed to compute the flux generated by a crystal-shaped
conductor in a finite Cartesian grid box, using a Gauss–Seidel iterative scheme. This method is general
and can be applied to compute Sh0 for any rectilinear shapes to any degree of accuracy. The dimensionless
mass transfer by molecular diffusion, Sh0, is identical to the diffusion of heat characterized by the Nusselt
number Nu0.

1. Introduction

The growth of an atmospheric ice crystal is deter-
mined by its heat and mass transfer. They are charac-
terized by dimensionless numbers, the Nusselt number
(Nu) for heat and the Sherwood number (Sh) for mass
transfer. Both numbers are functions of the airflow
as described by the dimensionless Reynolds number
(Re � �D���1), where � is the relative air velocity, D
the diameter, � is the density of the fluid (air), and � the
dynamic viscosity of the fluid). For pure molecular dif-
fusion Sh0 (Re � 0) and Nu0 are identical. In this study
Sh0 was explored. Here, Sh is an expression of mass
conservation, stating that what evaporates at the sur-
face is diffused away through the air, whereas Sho ex-
presses the mass transfer by molecular diffusion only
with Sh0 � �DDwa

�1, where � is the mass transfer per
unit of particle surface and time, D its diameter, and
Dwa the diffusivity of water vapor in air. The quantities

to be used when calculating the mass transfer are either
Sh or Sh0. A note of caution: The characteristic length
to be used in all similarity numbers has to be consistent,
it is either the diameter, the radius, or a specially de-
fined length (Pasternak and Gauvin 1960). The use of
ventilation coefficients is discouraged because they do
not automatically include the effects of pressure. Ref-
erences to values of Sh0 � 2 for spheres indicate that
the characteristic length is the diameter. Using the ra-
dius would produce Sh0 � 1.

The general forms of Sh and Nu always contain a
molecular diffusion component (Schemenauer 1972).
The convective effects are considered additive and may
control larger, faster falling particles. For a 1-mm hex-
agonal plate at an appropriate cloud temperature and
height the molecular part is reduced to �40% of the
total diffusion (List and Schemenauer 1971). For the
other shapes it is higher. The functional dependence of
Sh on Re has been directly measured by Schemenauer
and List (1978) for specific crystal shapes, but not their
anchoring points representing molecular diffusion
alone (at Re � 0).

Historically, there have been two main methods of
approaching either Sh0 or Nu0. In a first investigation,
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experimental data on the axial growth rates were fitted
to empirical equations (Todd 1964; Beard and Prup-
pracher 1971). This method involves many assumptions
and extrapolations and is not considered reliable ac-
cording to Jayaweera (1971). Well founded, however, is
the “electrostatic analogy” between the electrical field
divergence of a charged conductor particle and the mo-
lecular diffusion of mass (water molecules) from a geo-
metrically similar crystal to its environment. Both are
governed by the Laplace equation. Similarity theory
will provide the link between the two systems.

Houghton (1950) estimated Sh0 by treating crystal
shapes as limiting cases of shapes whose exact Sh0 val-
ues were known. He used a flat disc to approximate thin
plates and dendrites, while a sphere was stretched to a
prolate spheroid to approximate ice needles. In a sec-
ond approach to the electrostatic analogy, McDonald
(1963) directly measured the capacitance of crystal-
shaped (rectilinear) particles in a Faraday cage and
compared them with that of a known sphere. The effect
of the electrical wire, necessary for measurement and
suspension, turned out to lower Sh0 by �20%–50%.
However, assuming that the same correction factor for
spheres would also apply to any crystal shape led Mc-
Donald to tentatively corrected values for Sh0 for those
shapes—with limited success.

Before embarking on a numerical solution to the dif-
fusion equation, the authors have considered applying a
general electrochemical method (Schuepp and List
1969) to solve for the molecular diffusion. However
free convection would have affected the results and ex-
plorations of the Grashof similarity number did not
seem to simplify the problem. Thus, the direct numeri-
cal approach was chosen.

The solutions by the electrostatic analogy are impor-
tant to cloud physics where they apply to the first stages
of the formation of precipitation. They have potential
for other types of ice crystals, such as bullets and ro-
settes, as they are occurring in cirrus clouds. These two
types are relevant to satellite measurements and cli-
mate change modeling. Rosette crystals occurring in
cirrus clouds have already been treated by Chiruta and
Wang (2003) with the help of a numerical procedure
different from ours.

Including free fall at Re 	 0, Sh would normally be
expressed by Sh � Sh0 
 kSh Sc1/3 Re1/2, with the
equivalent for heat transfer given by Nu � Nu0 
 kNu

Pr1/3 Re1/2, where ki is a constant, Sc is the Schmidt
number, and Pr the Prandtl number. Combined equa-
tions for molecular diffusion and the added convective
diffusion have been measured by Schemenauer and List
(1978) for shapes very similar to the ones explored in
the present study. However, an extension of the present

study to account for free fall is subject to additional
investigations addressing also particle oscillation (as ex-
pressed by the Strouhal number) and its effect on free
fall and the heat and mass transfer. These complica-
tions led to the limitation of this paper to molecular
diffusion as experienced by crystals.

Thus, the purpose of this study is

(a) To develop a general method to numerically calcu-
late the molecular mass transfer by diffusion; that
is, the Sherwood numbers at zero flow (Sh0 � Nu0)
for ice crystals;

(b) to describe the crystal shapes appropriate for the
numerical scheme to formulate a discrete version
of the Gauss flux law;

(c) to apply the method and calculate Sh0 (�Nu0) for
specific crystals;

(d) to discuss the results and address issues to be re-
solved in the future.

2. Electrostatic analogy

Like the standard in the field of heat and mass trans-
fer, the electrostatic analogy relies on the assumption
that both temperature and saturation vapor pressure
over the surface of an ice crystal are constant in a
steady-state diffusive vapor field. Both this field and
the electrostatic potential in a vacuum obey Laplace’s
equation with analogous boundary conditions, as re-
quired by geometric similarity. In this analogy, Sh0 is
related to the capacitance of the crystal by

Sh0 �
4�CL

A
, �1

where A is the surface area, L is the characteristic
length such as the radius of the circumscribing circle or
half the height of the hexagonal prism, and C is the
capacitance in electrostatic units. In these units, the ca-
pacitance C has the dimension of length, which will
make Sh0 dimensionless. For a sphere where C � R, the
radius, Sh0 � 2 by definition. For the complex crystals
additional characteristics, such as aspect ratios, need to
be defined

3. Application of the Gauss–Seidel method

a. Derivation of the Gauss–Seidel method

The Gauss–Seidel (or Jacobi’s) iterative scheme is
used to solve the Laplace equation system by finding
the capacitance C of a conductor. It is applied to crys-
tals with rectilinear shapes in a Cartesian grid system.
Rectilinear shapes are those that can be constructed
with a finite number of straight edges. Discs and
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spheres are better treated in finite polar coordinate sys-
tems.

A Cartesian grid system (lattice) with 200 � 200 �
200 lattice points is used to represent a Faraday cage
with a conductive wall and a potential V � 0. The crys-
tal is freely suspended at the center of this cage with a
constant potential at its surface. Each lattice point is
labeled by positive integer indices (i, j, k), where i, j,
and k run along the x axis, y axis, and z axis respec-
tively. To simplify the analysis, a parameter � is intro-
duced, where � can be either x, y, or z. Thus �̂ repre-
sents the unit vector along the � axis; �� represents the
separation length between two adjacent points along
the � direction (Fig. 1). Assuming that the grid points
are sufficiently close to each other, the partial deriva-
tive of potential V at point (i, j, k) [denoted V(i, j, k)]
can be approximated by the following first-order finite
difference equation

�V�i, j, k

��
�

V��i, j, k 
 �̂� � V�i, j, k

��
. �3

Furthermore, defining a function A(�) as

A�� � V��i, j, k 
 �̂� 
 V��i, j, k � �̂�, �4

the finite difference approximation of second-order
partial derivatives of V can be approximated to first
order by

�2V�i, j, k

��2 �
A�� � 2V�i, j, k

2���2 . �5

To further simplify the analysis, the following propor-
tionality constants are introduced:

� � ��y

�x�2

� � ��z

�x�2

. �6

The Laplace equation in the discrete Cartesian grid sys-
tem then becomes

0 �
B�x

2��x2 

B�y

2���x2 

B�z

2���x2 , �7

where B(�) � A(�) � 2V(i, j, k). Rearranging of (7)
gives the final desired form of the potential

V�i, j, k �
��A�x 
 �A�y 
 �A�z

2��� 
 � 
 �
. �8

An iterative scheme that uses the centered difference
Eq. (8) is

Vn
1�i, j, k �
��An�x 
 �An�y 
 �An�z

2��� 
 � 
 �
, �9

where the subscript n indicates the value of the variable
in question at the nth iteration. This is the equation
used by the Gauss–Seidel iterative scheme for solving
Laplace’s equation.

b. Convergence rate

To make use of Gauss–Seidel scheme, Dirichlet
boundary conditions are specified; V is set zero on the
edges of the 200 � 200 � 200 grid box while it is as-
signed to an arbitrarily chosen constant V0 on the faces
of the crystal. On all other lattice points, V is initially
set to zero. Then V(i, j, k) is computed via (9) layer by
layer, starting with the k � 1 layer, then moving up to
k � 200 layer. The center of crystal is at k � 100 layer,
at the center of the grid box. One iteration is completed
when V(i, j, k) has been computed for all points in the
grid box. This procedure is repeated. A measure of
settling of the potential at a point (i, j, k) is defined as
�V(i, j, k) � |Vn(i, j, k) � Vn�1(i, j, k)|. The iteration is
halted when the following convergence criterion,
summed over all grid points, is met:

�
�i,j,k

�V�i, j, k � �, �10

where � is desired precision of the computation. The
number of iterations r required to reduce the overall
error by a factor of 10�p is

r � O�pN3, �11

where N is the number of grid points in an N � N � N
cubic regular Cartesian grid system.

An important question to ask at this junction is if the

FIG. 1. The 200 � 200 � 200 Cartesian grid box with variable
lattice separations �x, �y, and �z. Each lattice point is labeled by
a positive index (i, j, k) with (1, 1, 1) being the origin.
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scheme presented above guarantees convergence to the
exact solution. Laplace’s equation possesses the well
known maximum value property and the mean value
property. It can be shown that the solution derived by
(9) also obeys these properties (Strauss 1992, 208–210).
Then by the same way one shows that the solution to
Laplace’s equation is unique and that the solution de-
rived by (9) is unique. The reader is referred to the
literature on numerical methods for a proof that (9)
always converges to the exact solution.

To test if the outer faces of the 200 � 200 � 200 grid
box are sufficiently far away from the conductor sus-
pended in the middle, Laplace equation was solved for
150 � 150 � 150 grid box and the values of potential
obtained were compared to those from the 200 � 200 �
200 grid box. Floating point numbers with a precision of
ten decimal places were used in finding the potential V
at every grid point within the box. Maintaining the
same values of � and � for a given crystal, the Laplace
equation was solved in both grid boxes. By looking at
the value of V at point (i, j, k) in 150 � 150 � 150 box
and the V at the corresponding point (i, j, k) in 200 �
200 � 200 box, and doing this for all the points lying
within 1 to 20 grid spaces away from the faces of the
crystal, it was found that the two sets of values of V
differed by at most 10�7 in this region. For grid points
within one and six spaces away from the crystal faces, it
was found that the difference was at most 10�9. This
showed that within this 10-digit precision, the walls of a
200 � 200 � 200 Faraday cage were far enough from
the faces of the crystal, and thus could be effectively
considered to be infinitely far away from the crystal.
This justifies setting the potential to be 0 on the walls of
the Faraday cage.

There are other computational methods than Gauss–
Seidel scheme to solve the Laplace’s equation numeri-
cally, such as the simultaneous overrelaxation (SOR)
method. The SOR method has a convergence rate of
O(N2) for a N � N � N Cartesian system. Neverthe-
less, the Gauss–Seidel method was chosen since it is
simple and can be easily implemented. The SOR
method also requires a nontrivial task of choosing the
initial value of a parameter known as the relaxation
coefficient. The results one obtains from SOR are de-
pendent on which initial value was chosen, making
implementation of SOR more nontrivial than Gauss–
Seidel.

4. Representing shapes on finite lattice

a. Hexagonal plate

All the ice crystal shapes have been modeled using a
Cartesian grid box with variable lattice separations. A

finite number of points need to be established to rep-
resent each shape and to determine the optimal pro-
portionality factors � and � (6).

The important features of a hexagonal plate are its
vertices. A regular (� � �) Cartesian grid however does
not accommodate this shape. However, � � 3 allows for
a construction of a hexagon with all its vertices lying on
the grid points, but with the diagonal sides different by
a factor of 0.87 from the horizontal sides (see Fig. 2).
For the purpose of this paper, this difference was
treated acceptable and higher resolutions were not at-
tempted to reduce the difference closer to zero. In the
calculations, the properties of the plate were based on
the ideal length. Here, � � 1 would mean that the floor
and ceiling of the grid box are closer to the crystal than
the other sides. This is not desired since one would like
the sides to be as far away from the crystal as possible
to represent the boundary at infinity where the electro-
static potential vanishes. In addition � 	 1 is not ap-
propriate since this reduces the accuracy of the calcu-
lations. Thus � � 1 is chosen. Further, the plate is as-
sumed to be infinitesimally thin and lying on a single xy
planar layer of lattice points. The plate, like all other
shapes mentioned in this paper, is centered in the grid
box. This optimal representation of the hexagonal plate
results in the relationship: Nd � Nh/2, where Nd and Nh

are the number of segments used to represent a diago-
nal and the horizontal sides of the hexagon, respec-
tively (Fig. 2). The input data for the hexagonal plate
are displayed in Table 1, together with all the data of
the other shapes. Note that the radius of the circum-
scribing circle or hexagon side length is 8�x, with a
surface area described by A.

b. Hexagonal column

Once the hexagonal plate (HP) is modeled, the hex-
agonal column (HC) requires very little work. The col-

FIG. 2. Optimal representation of hexagon on the grid system
with 2Nd � Nh, where Nd and Nh represent the number of diago-
nal and horizontal segments respectively, with Nd � 1. Grid with
bead represents part of the hexagon. Shape simplified, ratio di-
agonal length to horizontal sides 0.87, angles correct.

JUNE 2006 Y O U K E T A L . 1653



umn is viewed as a stack of hexagonal plates separated
along the z axis by the grid spacing �z. Thus, a desired
number of hexagonal plates with sides are stacked on
top of each other, with � � 3 and � � 3. The ratio of
height of column to the side of a hexagonal face is
chosen as desired to determine the stack size. In this
paper, it was assumed to be 25�x over 8�x, giving an
aspect ratio of 3.125:1 (Table 1). Only � and �, the
relative grid sizes are important for C, while Sh0 is in-
dependent of actual dimensions.

c. Capped column

The capped column (CC) is modeled by adding two
infinitesimally thin hexagonal plates of desired dimen-
sions, one to the top and one to the bottom at a distance
of �x from the hexagonal column, which is then mod-
eled as above. In the present example, the added plates
had side lengths of 12�x while that of the column cross
section remained at 8�x.

d. Broad branched plate

A broad branched plate (BB) is obtained by simply
arranging a collection of hexagonal plates each of which
is modeled as in section 4a; � and � are kept the same

as above, while the hexagonal plates are arranged as
shown in Figure 3. As seen in the figure, the six hexa-
gons are first arranged as shown. On the grid represen-
tation, a bead is then put on all the grids that are inside
the hexagons as well as those grids that belong to the
star-shaped region in the middle. This collection of
beads represents the BB plate on our grid.

e. Stellar crystal

Modeling of a stellar crystal (SC) is markedly differ-
ent from the others. It may be tempting to model the
stellar crystal as six line segments intersecting at the
center as seen in Fig. 4. However, when the algorithm is
run a nonsensical value is obtained for Sh0 with this
particular representation because the central difference
approximation (8) is inherently assuming that �� in all
three directions is larger than the width of the branches
of stellar crystal (Fig. 4). This is not correct. A width of
one lattice spacing needs to be given while the thickness
is 0, as with BB.

5. Discrete version of Gauss’s flux law

A simple method of numerically computing Sh0 using
the potential V obtained via Gauss–Seidel method re-
quires computation of the capacitance C. Determina-
tion of C, in turn, is based on the computation of the net
surface charge of the crystal that gives rise to the sur-
face potential V0. The total electric flux of the crystal is
obtained by first enclosing the crystal in an inner virtual
cage (as opposed to the outer Faraday cage with its zero

FIG. 3. Arrangement of six hexagons, as in Fig. 1, to form broad
branched plate. Star-shaped region enclosed by hexagons is filled
with beads as part of crystal surface.

TABLE 1. Dimensions of HP, HC, BB dendrites, SC, and CC in
terms of multiples of an arbitrary length unit �x, with surface areas
A, column heights and aspect ratios (where required), with the
numerical results for capacitance C, and Sh0 � Nu0. Here, R is the
radius of the circumscribing circle for HP, BB, and SC, and the
prism cross sections of HC and CC; L is half the height for HC and
CC. The aspect ratio of the columns is the ratio of column height
to R. Note that the thickness of HP, BB, and SC is assumed to be
negligible compared to the top and bottom surfaces.

Shape Dimensions used C Sh0 � Nu0

HP R � L � 8(�x)
A � 332.55(�x)2

9.39(�x) 2.84

HC Height of column � 25(�x)
Characteristic length

L � height/2
Radius of cross section

R � 8(�x)
A � 1532.55(�x)2

Aspect ratio � 3.125: 1

23.02(�x) 2.36

BB A � 2660.43(�x)2

R �16(�x)
45.65(�x) 3.45

SC Radius R � 6(�x)
A � 72(�x)2

5.44(�x) 5.70

CC Height of column H � 25(�x)
Characteristic length L � H/2
Radius of HP cross section

R1 � 8(�x)
Radius of caps R2 � 12(�x)
A � 2738.06(�x)2

21.4(�x) 12.30
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potential on the walls). The inner virtual cage is not a
Faraday cage. That is, its walls are not assigned a con-
stant potential or V � 0. It is simply a geometrical
construct, a Gaussian surface through which the flux
from the crystal is computed. It is positioned close to
the test particle so that the divergence of the electrical
field lines is greatest. The grid points lying on the walls
of this inner cage inherit the potential V solved previ-
ously by the Gauss–Seidel method. The dimensions of
the virtual cage depend on the crystal it encloses. But in
all cases, the sides of this enclosure are at most two grid
points away from the crystal (Fig. 5). The specific di-
mensions of enclosure for some of the shapes investi-

gated are also shown in Fig. 5. The best way to enclose
a given shape is to simply mimic the outline of the
crystal. For instance, an HP is enclosed by a hexagonal
column whose sides are at most one grid point away
from HP. An HC is enclosed by a larger HC and SC
plate by a SC column. The CC is enclosed in two parts:
the HC constituting CC is enclosed by a HC whose
sides are just one cell away, while the two caps of CC
are enclosed by HC like the way HC was described
above. Each side of the inner cage consists of grid cells,
which are called area elements. These cells have the
same respective lattice spacing as the main grid. Ap-
proximation of the flux through a given area element
whose outward unit normal is in ��̂ direction is

F �� � �
V��i, j, k � �̂� � V�i, j, k

��
��
���,

�12

FIG. 4. (a) Inappropriate representation of stellar crystal; (b)
approximation of a stellar crystal on xy plane. Branch width and
length can be selected. Rotational symmetry of stellar crystal not
exact in finite grid.

FIG. 5. Bird’s eye view of enclosure shapes, indicated by thick
line segments: (a) Hexagon enclosed by hexagonal column; top
and bottom faces of column are one step along the z axis above
and below the hexagon. (b) Enclosure for BB plate is a BB col-
umn with top and bottom faces one step along the z axis above
and below BB plate. (c) Part of stellar crystal. An SC column
enclosed the stellar crystal, with top and bottom faces one grid
point along z axis away from SC plate. The distortions from ideal
hexagons are as described in Fig. 2.
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where � and � are the other two coordinates besides �.
In (12), (i, j, k) refers to the grid point at the center of
the area element. This approximation may, a priori,
seem coarse. However, as will be shown later, this ap-
proximation gives quite an accurate computation of Sh0

for the dimensions investigated in this paper. The main
reason for placing each side of the enclosure cage at
most two lattice points away from its nearest side of the
crystal is that such a construction allows for dealing
only with �V/�� rather than the three-component �V in
computing the flux (due to the fact that the electric field
is perpendicular to the surface of perfect conductors,
the original crystals). Ideally, the enclosure cells should
be at most one grid point away from the nearest surface
of the crystal but it was found from numerical tests that
extending out to two grid points away from the nearest
surface of crystal has a negligible effect on the value of
C and hence on the Sh0. By using (12), � {V[(i, j, k) �
�̂] � V(i, j, k)}/��) is the value of the electric field
perpendicular to the area element at (i, j, k). As the
sides of the inner box move away from the crystal, the
net flux, C, and thus the Sh0 computed via (12), deviate
from the results obtained with a closer inner box. As
the Gaussian surface is enlarged and changed to differ-
ent shapes, the flux through the surface deviated by an
amount such that Sh0 differed by no more than about
0.02. In accordance with Gauss’s law, the net flux is
invariant under change of the shape and size of the
inner virtual cage, up to the minor numerical error
mentioned above. The total flux through the inner cage
is computed by summing the flux (12) through each of
its area elements. From the net flux, the surface charge
on the conductor is computed and its capacitance is
established. Then Sh0 is computed via (2) with �x car-
ried throughout all of these calculations but canceling
out at this last stage.

6. Dimensional analysis

At this point, a discussion on the physical length that
�� represents is warranted because when a flux through
an area element is computed, � and � are not sufficient
for expressing the net flux. Rather, the actual lattice
spacing �� is required. For example, a flux through a
face whose unit normal is in �ẑ direction is

F �z � �x��

��1�2

��V�i, j, k � 1 
 V�i, j, k�.

�13

The only unknown value for the flux in (13) is the
length scale �x, an actual physical length scale, which
had not been discussed. After all, the Gauss–Seidel it-

eration (9) utilizes only the relative proportions � and
�, while the potential V does not depend on the choice
of �x. But (13) draws attention to �x. Note that Q � �x
is in electrostatic units, and so C � �x. Thus, via (1) we
have Sh0 � (�x)2/(�x)2 � 1; that is, although �x is un-
known throughout our calculations, all �x cancel out at
the end because the actual physical length scales are
irrelevant in the computation of the dimensionless Sh0.

Only the relative proportions of shapes and boundary
conditions are relevant.

7. Results and discussion

The uncertainties in the values of the molecular dif-
fusion of heat and mass based on the approximations by
Houghton (1950) and the measurements of McDonald
(1963) led to the development of a numerical method,
which allows the numerical calculation of these quan-
tities by the solution of the controlling Laplace equa-
tion for an electrostatic analog. Examples of values for
hexagonal plates, stellar and broad-branched crystals,
prisms and capped columns have been obtained.

Applying the numerical method described above ca-
pacitance, C, and Sh0 have been computed for crystal
shapes of interest in cloud physics (Table 1). They are
valid for geometrically similar shapes only. To allow
some rough comparisons, the characteristic lengths
were chosen either as the radius or half the column
height. One word about the capped columns: its mo-
lecular transfer is highest because of the relatively large
surface area and the exposure of the edges of the end
plates.

Heat and mass transfer calculations and measure-
ments are generally based on the assumption of the
homogeneity of surface temperature (equivalent to
constant electric potential in the electrostatic analogy).
Deposition (and evaporation) of water molecules is dif-
fusion controlled because the latent heat of deposition
needs to be diffused away through the air. Higher de-
position will lead to higher surface temperatures due to
increased release of latent heat of deposition. This in
turn translates into higher surface temperature and
saturation vapor pressure at the surface and, conse-
quently, a reduced concentration gradient. Hence, cor-
rections would immediately be triggered and equilib-
rium will be maintained. This situation could only
change if heat would be conducted away from hot spots
at the crystal surface through the crystal interior. This
does happen in hailstone growth (Zheng and List 1996),
but is unlikely to be of any consequence in ice crystal
growth because of the much smaller dimensions.

Once crystals assume a nonnegligible fall velocity,
both heat and mass transfer will be increasing by the
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addition of a Reynolds number-dependent convective
part of Sh and Nu. The combined transfers have been
measured by Schemenauer and List (1978) for the crys-
tal types considered here. The transfers can now be
properly anchored at Re � 0. This will be reported later
with a full parameterization of the growth theory. Con-
sidering that free-fall experiments have been carried
out for similar-shaped crystals by List and Sche-
menauer (1971), a combination with the heat and mass
transfer is feasible, but only after the effect of oscilla-
tions, estimated at enhancing Sh by up to 20%, are
understood. Then a combined experiment-based theory
can be applied to ice crystals growing in the atmosphere
and comparisons can be made to crystal growth in na-
ture. Nevertheless, a first estimate indicates that mo-
lecular diffusion of mass and heat is dominant for crys-
tals with diameters � 1 mm, that is, nearly all crystals
occurring in the atmosphere.

Comparisons to Houghton (1950) and McDonald
(1963) will not be made at this time because the shapes
and aspects ratios treated are not similar. Nevertheless,
it can be said that Houghton’s approximations for hex-
agonal plates are within �5% of the new numerical
values while McDonald’s values are lower by up to
�50%. Thus, Houghton’s approximations seem to be
reliable for shapes obtained by compressing or stretch-
ing spheres. However, they are not useful for rectilin-
ear-shaped crystals more complex than hexagonal
plates. That is the realm of the newly developed scheme.

As mentioned before Chiruta and Wang (2003) car-
ried out similar numerical studies with crystal shapes
typical of rosettes. While their method of computation
is similar in spirit to ours, they have used discrete cur-
vilinear coordinates that would not be suitable for our
rectilinear crystals. In turn, our rectilinear grid system is
not suitable for studying their idealized rosettes, which
they approximated by collections of rounded bullets.
Because of the difference in our grid systems, the dis-
crete versions of Gauss’s law and Laplace equations are
different. Chiruta and Wang (2003) have noted that
when the ratio of grid box to particle size was greater
than seven to one (as compared to eight to one in the
present case), their numerical solutions were no longer
sensitive to further changes in the size of the Faraday
cage. This is similar to the present results when chang-
ing the size of the grid box from 150 � 150 � 150 to
200 � 200 � 200 produced differences in potential by at
most 10�9 for grid points nearby the crystal faces.

In addition to establishing Sh0 for better approxima-

tions of the hexagonal plate and different aspect ratios
of columns, broad branched crystals, prisms and capped
columns, the present work needs to be expanded to
needles and particles of importance in cirrus such as
bullets and rectilinear rosettes. Bullets can be simulated
by tapering off a hexagonal prism at one end, rosettes
could be thought of as assemblies of bullets. Such new
numerical experiments on molecular diffusion would be
of importance to both cloud physics and climate change
models.
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