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Supplementary Fig. 1. Conventional view of temperature-dependent cell-growth for populations 
of wild-type yeast defines habitable and inhabitable temperatures (Related to Figure 1b). (a-c) 
To obtain the conventional picture depicted in Figure 1b, we performed a laboratory-standard growth 
experiments in which we used a plate reader (BioTek Synergy HTX microplate plate reader, model 
S1LFA) to measure the Optical Density (OD) of liquid cultures of wild-type yeast cells over time (up to 
20 hours shown here). OD represents the optical absorption of light at a wavelength of 600 nm and is 
directly proportional to the number of cells per volume, OD=0.10 corresponds to approximately 106 cells/
mL. The plate reader cannot detect sufficiently small ODs (i.e., OD < 0.08). We show here data for 38 OC 
(a), 39 OC (b), and 40 OC (c). Populations are representative for n = 3 replicates. For each temperature, 
the different colors represent cell-populations with distinct starting ODs. To obtain these starting ODs 
for a given temperature, we diluted cells from a single liquid culture of cells that grew overnight at 30 OC 
(also for growth experiments that appear in later figures). The starting ODs are approximately 0.10 (red), 
0.05 (blue), 0.025 (green), and 0.0125 (black). Blue, green, and black curves start with ODs - obtained by 
serial dilutions of denser cultures - that are below the lowest OD that the plate reader can detect whereas 
the red populations start above it.  All cultures at 38 OC and 39 OC reach their carrying capacities (i.e., ODs 
plateau over time in (a-b)).  None of the populations grew at 40 OC (i.e., OD remains flat over time in (c)).
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Supplementary Fig. 2. Temperature remains stable during all our growth experiments (Related to 
Figure 2). In all our growth experiments described in Figure 2 and subsequent figures (performed with 
liquid cultures of cells incubated in compressor-cooled, high-precision thermostatic incubators (Memmert 
ICPs)), the incubators stably maintained their target temperature throughout the course of our growth-
experiments, with a typical standard deviation of 0.017 OC over time (deviation measured over several 
days). As representative examples of a continuous measurement, shown here are temperatures recorded 
by the incubator's sensor, zoomed to 24 hours for five separate growth experiments: Starting from the 
top, the curves are for 41 OC, 40 OC, 39 OC, 38 OC and 30 OC.  We also verified and aligned the incubators' 
temperatures by using a different thermocouple device. Thus, we measured temperature values with two 
different thermocouple devices and the temperature remained stably constant over the course of each 
growth-experiment.
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Supplementary Fig. 3. If the temperature is at or below 36 OC, every population of wild-type cells 
deterministically grows regardless of the initial population-density (i.e., all populations grow to 
reach a carrying capacity) (Related to Figures 2a-d). (a-d) Population-density (number of cells/mL) 
measured over time with a flow cytometer. Each curve shows a population of wild-type cells that started 
with a desired initial density. The initial population-densities vary over ~1000-fold, from very dilute (~10 
cells/mL) to less dilute (~1000 cells/mL). Horizontal, grey line at the top of each plot shows the carrying 
capacity that we estimated by averaging the density of each population after it eventually stops growing 
(we used only the populations with the highest initial densities for this estimate). Sample data shown for 
30 OC (a), 32.0 OC (b), 34.0 OC (c), and 36.0 OC (d). Different colors represent different initial population-
densities. For each color, there are n = 8 (a) or n = 6 (b-d) replicate populations (biological replicates). 
For every initial population-density, every replicate population exponentially grew in an identical manner 
until they reached a carrying capacity. Here, “identical manner” means that all curves of the same 
color perfectly overlap within each panel (compare this with populations that exhibit random growths in 
Supplementary Fig. 4). In other words, every initial population-density, regardless of how low they were, 
led to a deterministic growth for temperatures at or below 36.0 OC. These results show that the no-growth 
and random-growth phases do not exist below 36 OC. Only deterministic growth exists for the wild-type 
cells at temperatures below 36 OC, consistent with the wild-type strain’s phase diagram (Figure 2d).
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Supplementary Fig. 4. If the temperature is above 36 OC, growth of wild-type cells depends on 
the initial population-density (Related to Figures 2a-e). (a-j) Population-density (number of cells/
mL) measured over time with a flow cytometer for populations of the wild-type cells with differing initial 
densities. Grey line shows the carrying capacity that we estimated by averaging the final densities of the 
populations, which started with the lowest initial densities, that grew. Sample data shown for 36.7 OC (a), 
37.8 OC (b), 38.0 C, (c), 38.2 OC (d), 38.5 OC (e), and 39.2 OC (f) – e and f are copied here from Figure 
2a-b for completeness. Further sample data shown for 39.6 OC (g), 39.8 OC (h), 40.1 OC (i), and 40.3 OC 
(j). Different colors represent different initial population-densities. Each color shows multiple biological 
replicates (n = 8 (a-h), n = 3 (i) or n = 4 (j)). To show multiple starting population-densities for populations 
having the same growth phase (e.g., random-growth phase), we used here a color scheme that is different 
from the one used in Figures 2a-c. Based on the growth experiments whose sample data are shown here, 
we constructed the phase diagram for the wild-type cells (Figure 2d). To construct the phase diagram,  
we determined whether a given initial population-density belongs to a deterministic growth phase, or a 
random growth phase, or a no-growth phase from the growth-kinetics data such as the ones shown here 
in the following manner: An initial population-density belongs a deterministic growth phase in the phase 
diagram if every replicate population, all of which start with the same population-density, exponentially 
grows over time in an identical manner (i.e., all curves of the same color overlap - collapse into a single 
curve - in the plots above). As an example, Supplementary Fig. 3 shows all initial population-densities 
leading to a deterministic growth at temperatures below 36 OC. An initial population-density belongs to the 
no-growth phase in the phase diagram if none of the replicate populations grow after an initial, transient 
growth that typically lasts at most ~10 hours due to the effect of the cells having just been transferred 
from a 30 OC to their new temperature. As an example, in (g), the lowest initial population-density (red 
curves) belongs to the no-growth phase. An initial population-density belongs to a random-growth phase 
in the phase diagram (Figure 2d) if the curves of the same color - representing replicate populations - 
do not overlap or, in the starkest cases, when some replicate populations do grow while others do not. 
Here, the curves of the same color, representing replicate populations that grow, do not overlap due to 
the each population growing at distinct rates or starting to grow - after a stasis - at different times after 
the transient growths stop, causing these populations to reach a carrying capacity at vastly different 
times (i.e., different by tens to hundreds of hours) despite all replica populations having the same initial 
density. As an example, an intermediate initial population-density in (e) - represented by green curves 
- leads to random growths. Finally, we determined the phase boundaries in the phase diagram (Figure 
2d) as follows: We drew the boundary that divides the deterministic-growth and random-growth phases 
by connecting the data points that represent the lowest measured initial population-density that yielded a 
deterministic growth for each temperature (i.e., the minimum number of cells per unit volume necessary to 
guarantee that a population grew at each temperature). We drew the boundary that divides the random-
growth and no-growth phases by connecting the data points that represent the highest measured initial 
population-densities that yielded a no-growth phase for each temperature (i.e., the maximum number 
of cells per unit volume necessary to guarantee that a population would not grow at each temperature). 
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Finally, we determined the temperature above which a population-level growth is no longer possible by 
determining the lowest temperature at which populations that start with different densities always reach 
different final densities when they stop growing (i.e., populations never grow to the carrying capacity 
whereby one or more essential nutrients has been depleted). As an example, at 40.3 OC (j), populations 
with different initial densities never reach the same density when they stop growing. 
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Supplementary Fig. 5. Cost of expressing a spurious gene (GFP) alters how an initial population-
density affects whether a population grows or not at high temperatures (Related to Figure 2f). 
Characterization of the two yeast strains ("1x-GFP" and "100x-GFP" strains) that constitutively express 
GFP, which we used to construct the phase diagrams in Figure 2f. (a) A histogram of GFP-expression 
levels of the two engineered yeasts and the wild-type strain as measured by a flow cytometer. The 
1x-GFP cells have a higher mean-fluorescence than the wild-type cells whereas the 100x-GFP cells 
have approximately 100-fold higher mean-fluorescence than the 1x-GFP cells. (b-i) As with the wild-type 
strain (Supplementary Fig. 3-4), we performed growth experiments in which we used a flow cytometer to 
measure the population-density (number of cells/mL) for the 1x-GFP and 100x-GFP strains. Sample data 
shown for 30 OC (b, 1x-GFP strain in grey and 100x-GFP strain in green), 35.0 OC (c, 100x GFP strain), 
36.7 OC (d, 1x-GFP strain; e, 100x-GFP strain), 37.7 OC (f, 1x-GFP strain; g, 100x-GFP strain), and 39.1 
OC (h, 1x-GFP strain; i, 100x-GFP strain). Different colors represent different initial population-densities. 
Each color shows multiple replicate populations (n = 6 (b) or n = 8 (c-i)).  To show multiple starting 
population-densities for each of the growth phases (e.g., random-growth phase), we used here a color 
scheme that is different from the one that we used in Figures 2a-c. To distinguish deterministic, random, 
and no-growth phases for the 1x-GFP and 100x-GFP strains, we used criteria that are similar to the ones 
that used for the wild-type strain (Figure 2d) which we described in the caption for Supplementary Fig. 4. 
Here, for a given temperature, we classified an initial population-density as belonging to the deterministic-
growth phase if at least six out eight replicate populations (biological replicates) that started with this 
density exponentially grew (note that for the wild-type cells, all eight out of eight replicate populations 
must have exponentially grown for the initial population-density to be classified as yielding a deterministic 
growth). Conversely, for a given temperature, we classified an initial population-density as belonging to 
the no-growth phase if six out of eight populations with the same initial population-density did not grow 
(for the wild-type strain, all eight populations had to not grow). These slight differences in the definitions 
of the phases between the wild-type and the GFP-expressing strains do not qualitatively change the 
main features of the phase diagrams (Figure 2f). In short, the main conclusion - that expressing more of 
a spurious gene (GFP) means that, at a given temperature, a population must start with a higher density 
of cells than a population of cells with a lower GFP-expression in order to achieve a deterministic growth 
- is unaffected by the slight difference in the definition of the phases. 
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Supplementary Fig. 6. Unconventional deaths at high temperatures: number of survivors at high 
temperatures decreases over time as a heavy-tailed function and deviates by orders of magnitude 
from the conventionally expected number of survivors (Related to Figures 3a-b). (a) Schematic 
description of how we measured the number of surviving wild-type cells, over time, in a population that 
was incubated at a high temperature and could not grow (because it was in the no-growth phase according 
to the phase diagram (Figure 2d)). In short, at various times, we took out an aliquot from a liquid culture 
of non-growing population that was kept at a high temperature. We then serially diluted this aliquot by 
known amounts - this was to ensure that we could have countable numbers of colonies if there were any 
survivors in the aliquot - and spread the droplets containing the serially diluted cells on an agar pad which 
we incubated at 30 OC. After a few days, we counted the number of colonies that formed (colony forming 
units) on the agar pad at 30 OC. By counting the number of colony-forming units and knowing the dilutions 
and volumes of the aliquots that we took out at various times, we determined the "number of survivors/
mL" that we plotted in (b-g) and Figures 3a-b. For the last several time points in (b-g) and Figures 3a-
b, aside from counting the number of colony forming units, we double checked our results by using a 
complementary method to count the number of survivors per volume: taking an aliquot whose volume is 
only a fraction of the total volume of the liquid culture would have yielded very few colonies on the agar 
pad, since there was typically less than one survivor per mL in the liquid cultures. Thus, we took out an 
appropriate volume (typically tens of mL) from the flask that contained the entire liquid culture which was 
incubated at a high temperature, transferred it to an Erlenmeyer flask, and then left the flask at ~30 OC for 
several days without shaking it so that all the surviving cells in that liquid that we took out settled down 
to the bottom of the flask and formed colonies. To measure the last time points in (b-g) and Figure 3a-b, 
we moved the flask that contained the entire remaining liquid culture (i.e., the entire population) from a 
high temperature to ~30 OC to ensure that we counted all remaining survivors using the “settling-to-the-
bottom” method. Both methods - directly counting the colonies formed on agar after spreading a serially 
diluted aliquot of the liquid culture and counting the colonies formed by surviving cells that settled down to 
the bottom of a flask - yielded the same results. (b-g) We used the method in (a) to measure the number 
of surviving wild-type cells per mL at 40.3 OC (b), 40.5 OC (c), and 41.0 OC (d-g). In (b-f), brown dashed 
lines represent an exponentially decaying function that we fitted to the first three time points (i.e., data 
points for the first day of incubation at a high temperature). For (g), the brown dashed lines represent 
an exponentially decaying function that we fitted to the data points that lie within 10 - 50 hours. The blue 
dashed curve is a power-law function fitted to the same data points as the ones that we used to fit the 
exponentially decaying functions. In (b-g), we see that the data points vastly deviate from the brown 
dashed line (i.e., the final time point deviates by at least ~104 cells/mL). Thus, contrary to the conventional 
view of cell death at high temperatures, the number of survivors does not exponentially decrease over 
time (i.e., cell death is neither autonomous nor fixed by a single (exponential) rate constant). Instead, it 
decreases over time as a heavy-tailed function. 
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Supplementary Fig. 7. Transferring cells growing at ~39 OC to a fresh medium that was pre-warmed 
to 39 OC before the transfer stops cell growth (Related to Figure 4a). All experiments done at 39.2 
OC. Two overlapping blue curves show two populations of wild-type cells that started with the same 
initial density. At this initial population-density, these two populations are in the random-growth phase 
at 39.2 OC. After ~100 hours of incubation at 39.2 OC, we took some of the cells in these populations, 
which were growing in mid-log phase (marked by the boxed blue data points), and transferred them into 
a fresh minimal medium that we pre-warmed to 39.2 OC. The transfer was such that the newly created 
population, in the fresh medium, started with the same number of cells/mL as the population-density that 
the original populations had after their transient growth and before they started to grow (~10,000 cells/
mL as shown). A population that starts with ~10,000 cells/mL at this temperature (39.2 OC) would be in 
the deterministic-growth phase according to the phase diagram (Figure 2d). We incubated the newly 
created cultures at the same temperature as the original population (see “Growth experiments” in the 
Methods section) and measured their population densities over time (green curves show two replicate 
populations). Both populations did not grow at all (see flat green curves), indicating that cells that were 
growing at the high temperature did not continue to grow when transferred to fresh media at the same 
high temperature. The fact that these populations of transferred cells (green curves) did not grow does 
not contradict the phase diagram (Figure 2d) since, for constructing the phase diagram, we transferred 
cells from 30 OC to a new (higher) temperature whereas for the experiment described  in this figure, we 
transferred cells from 39.2 OC to 39.2 OC. 
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Supplementary Fig. 8. Density-dependent growths of cells at high temperatures are due to the 
cells collectively altering their shared extracellular environment (Related to Figures 4b-c). (a-d) 
All black curves all represent a population of wild-type cells that started with ~30,000 cells/mL and was 
deterministically growing at 39.2 OC. We let such a population grew for 4.5 hours (a), 9.5 hours (b), 12.5 
hours (c), or 16.5 hours (d) before we flowed the liquid cultures of these growing cells through filter 
papers that had 200-nm-diameter pores. This resulted in a complete, physical separation of the cells from 
their liquid growth media. We confirmed the complete separation by flowing the filtered media through a 
flow cytometer: we detected no cells in them at all. We then transplanted fresh cells into each of these 
filtered media. This created new populations, all starting with ~400 cells/mL, which we also incubated 
at 39.2 OC. We then measured the densities of these newly created populations over time (red curves 
for (a-c) and blue curves for (d)). As a control, we also incubated fresh cells in fresh media - rather than 
in one of the filtered media - so that the resulting population started with the same density - 400 cells/
mL - as the other newly created populations. We then measured the control population’s density over 
time (grey curves in (a-d)). For each color in (a-d), there are n = 8 (a-c) or n = 6 (d) replicate populations. 
Red curves in (a-c) show no appreciable growth beyond transient growths while the blue curves in (d) 
show deterministic growths that reach the carrying capacity. These results (a-d) show that growing cells 
at a high temperature (e.g., 39.2 OC) gradually alter their extracellular growth medium - for example, 
by potentially secreting a factor - in such a way that the medium can induce growth of populations that 
cannot grow by themselves (without inheriting the changed medium) because their initial densities are 
too low (e.g., 400 cells/mL).  (e-h) We used the same protocol as in (a-d) except that this time, we grew 
the wild-type cells at 30.0 OC instead of at 39.2 OC before taking away their growth media for creating new 
populations, which we did incubate at 39.2 OC. Specifically, we grew the wild-type cells - starting again 
at ~30,000 cells/mL as in (a-d) - for 4.5 hours (e), 9.5 hours (f), 12.5 hours (g), or 16.5 hours (h) before 
taking away their liquid media and transplanting fresh wild-type cells into them by using the same filtration 
method as in (a-d). We incubated the newly created populations - each starting with ~400 cells/mL - at 
39.2 OC as in (a-d). Orange curves (e-g) show these populations’ densities over time at 39.2 OC. Grey 
curves (e-g) show control populations which are identical to the control populations in (a-d). For each 
color in (e-h), there are n = 8 (e-g) or n = 4 (h) replicate populations. Beyond the initial, transient growths, 
none of the orange curves (e-g) show any sustained exponential growths (i.e., none reach the carrying 
capacity). The results in (e-g) show that, unlike the media taken from the cells that were growing at a 
high temperature (39.2 OC), the media taken from cells growing at the conventional temperature (30 OC) 
does not contain the right factors for inducing growth of populations at a high temperature (39.2 OC). (h) 
Population that was incubated at 30 OC was in a stationary phase after 16.5 hours of incubation, as shown 
here, after a log-phase growth that depleted essential nutrients which caused the population to undergo 
a diauxic shift. We took out this stationary population’s growth medium and transplanted fresh cells into 
it, and then incubated this newly created population at 39.2 OC. Blue curves show this population - all 
replicate populations - growing at 39.2 OC and nearly reaching the carrying capacity. These results (e-h) 
show that some factors that yeasts secrete during a stationary phase at 30 OC after a diauxic shift - and 
perhaps during a diauxic shift - can induce population growths at high temperatures (e.g., at 39.2 OC).

14



ba

c

0 20 40 60
Time (hours)

100
102
104
106
108

# 
of

 c
el

ls
 / 

m
L

Small populations of cells in minimal (SC) 

20% SC + water
40% SC + water
60% SC + water
80% SC + water

Just water (0% SC) 
100% SC

medium diluted with water (39.2   C)o

2% glucose with:

102

104

106

108

 #
 o

f c
el

ls
 / 

m
L

Cells in minimal (SC) medium with

0 20 40 60
Time (hours)

80

2% glucose
1% glucose
0.2% glucose

various amounts of glucose (39.2   C)o

100 150 200
Time (hours)

102

104

106

108

# 
of

 c
el

ls
 / 

m
L

500

0% trehalose
2% trehalose
2% trehalose

0.5% trehalose
1% trehalose

Cells in minimal (SC) medium with 2%-glucose
and variours amounts of trehalose (39.2   C)o

0 20 40 60
Time (hours)

100
102
104
106
108

# 
of

 c
el

ls
 / 

m
L

Large populations of cells in minimal (SC) 

20% SC + water
40% SC + water
60% SC + water
80% SC + water

Just water (0% SC) 
100% SC

medium diluted with water (39.2   C)o

2% glucose with:

d

Supplementary Fig. 9. Population-density dependent growths at high temperatures are not due 
to cells depleting essential nutrients from the extracellular medium (Related to Figure 4c). (a-b) 
Minimal media (called “SC media”) contains all essential amino acids and nitrogenous bases. At 39.2 OC. 
Wild-type cells were incubated in SC media that we diluted with water by various amounts as indicated 
(note: “100% SC” means no dilution, “50% SC” means that we used water to dilute all contents of SC 
by half, and so on). We supplemented all media, regardless of by how much they were diluted, with 
a saturating concentration (2%) of glucose. Graphs show how population densities change for cells 
incubated in a 20%-SC medium (i.e., 20% SC + 80% water, supplemented with a 2% glucose), 40%-, 
60%-, 80%-, and a 100%-SC medium. Different colors represent different dilutions of SC. Light grey 
curves show populations incubated in just water with a 2%-glucose (i.e., no SC). (a) All curves start at 
~400 cells/mL. None of the populations grew. (b) All curves start at ~10.000 cells/mL. All populations, 
except for those without any essential amino acids (0% SC), grow deterministically until they reach their 
respective carrying capacities. Thus, the 20% to 100% SC all contain sufficient nutrients for a population 
to grow. Together, (a) and (b) show that population growths are not caused by depletions of some 
extracellular components in the SC-medium (i.e., these results suggest that cells secrete some factors 
that induce population growths). (c) Complementary to (a), wild-type populations (initially ~400 cells/mL) 
were incubated at 39.2 OC in minimal media (100%-SC media) with various concentrations of glucose. 

15



Shown here are cells incubated in SC + 2% glucose, SC + 1% glucose, and SC + 0.2% glucose. None 
of these populations grew. Thus, population-density dependent growths that we observed in our study 
are not due to glucose depletions. (a-c) together establish that it is not a depletion of any of the nutrients 
in the media that cause the observed population-density dependent behaviors. This can additionally be 
realized by considering the fact that media that has been depleted of nutrients by wild-type populations in 
log-phase at 30 OC also does not induce population growth at high temperature (Supplementary Fig. 8e-
g). (d) At 39.2 OC. Wild-type cells incubated in minimal media supplemented with various concentrations 
of trehalose at two different initial population densities (one that is too low for population-level growth 
(~400 cells/mL) and one that is sufficiently high for population-level growth (~10,000 cells/mL)). These 
data show that trehalose neither inhibits (at 10,000 cells/mL) nor induces (at 400 cells/mL) population 
growths. Trehalose is a common antioxidant. These results show that trehalose plays no role in aiding or 
preventing populations growths at high temperatures. For each color in (a-d), there are n = 4 (a-b,d) or 
n = 8 (c) replicate populations.
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Supplementary Fig. 10. Transcriptome (RNA-seq) analysis reveals effects of high temperatures 
on gene expression in deterministic-growth and no-growth phases (Related to Figures 4d-f). 
Transcriptome (RNA-seq) analysis of wild-type yeast cells in mid-log phase growth at 39.2 OC after 
75 hours and 100 hours of incubation (initial population-density: ~11,000 cells/mL) and in no-growth-
phase at 40.5 OC after 72 hours of incubation (initial population-density: ~48,000 cells/mL). Genes were 
categorized based on the Gene Ontology (GO) annotations. Shown here are the number of genes that 
are upregulated (blue) and downregulated (red) for the respective categories. Genes are classified as 
up- or down-regulated relative to their expression levels when they grow (always deterministically) at 
30 OC. For the analysis, we averaged the expression levels of n = 3 (at 39.2 OC and 30 OC) or n = 2 (at 
40.5 OC) biological replicates. The gene counts only include genes whose expression level differed by 
at least a 2-fold from their expression levels at 30 OC (shown in light colors) and differentially expressed 
genes (shown in dark colors, corrected for multiple testing). (a) For genes associated with the ribosome: 
Notably, ribosomal protein subunits were downregulated. Ribosome assembly, polymerases I and III and 
transcription of rRNA were upregulated for deterministically growing yeasts at 39.2 OC while they were 
downregulated for yeasts in the no-growth phase at 40.5 OC. (b-c) For genes associated with translation 
(b) and the mitochondrial genes (c): Almost all differentially expressed genes were downregulated. The 
ribosomal genes of mitochondria were upregulated for deterministically growing cells at 39.2 OC and 
downregulated for the no-growth-phase cells at 40.5 OC compared to their expression levels at 30 OC. 
(d-f) For genes associated with protein processing (d) and genes associated with the central carbon 
metabolism (e) and other metabolic activity (f), many of which are significantly differentially expressed: 
Most notably, genes of the glycolysis and respiration were downregulated at the high temperatures. 
(g-h) For cellular responses to heat and DNA damage (g) and genes associated with the cell wall (h): 
Strikingly, cell wall assembly was upregulated for both the deterministically growing cells and the no-
growth-phase cells at high temperatures relative to their expression levels at 30 OC. (i-j) For genes 
associated with ion homeostasis (i), and other carbohydrates (j): Most genes involved in the turnover of 
trehalose (a metabolite involved in thermotolerance) were downregulated compared to their expression 
levels at 30 OC. Genes associated with metabolism of disaccharides such as maltose were upregulated, 
even though the minimal growth medium lacked disaccharides and our wild-type strain is unable to grow 
on maltose. (k) Genes associated with the cell cycle. (a-k) Overall summary: Our transcriptome analysis 
revealed that global gene-expression levels were predominantly downregulated for both deterministically 
growing cells (at 39.2 OC) and no-growth-phase cells (at 40.5 OC) compared to the expression levels 
at 30 OC. Moreover, we found that this global downregulation was more pronounced for the no-growth-
phase cells at 40.5 OC than for the growing cells at 39.2 OC. Interestingly, the central carbon metabolism 
was downregulated for the no-growth-phase and deterministically growing cells and the ribosomal 
subunits were also downregulated, even for the deterministically growing cells at 39.2 OC. Furthermore, 
genes involved in the ribosomal transcription and assembly, the mitochondrial ribosome, and translation 
termination were upregulated for the deterministically growing cells at 39.2 OC and downregulated for the 
no-growth-phase cells at 40.5 OC.
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Supplementary Fig. 11. At high temperatures, cells in the random-growth phase and deterministic-
growth phase populations secrete glutathione, while the cells are in log-phase growth. These cells 
also secrete glutathione while they are in stationary phase (Related to Figure 4e). (a) Populations 
with different starting densities at 39.2 OC (n = 3). (b-c) For each of these populations, we measured their 
extracellular glutathione concentration after 25 hours, 33 hours, and 48 hours of incubation at 39.2 OC (i.e., 
for the time points in the yellow region in (a)) (error bars represent the mean with s.e.m., n = 3 replicates 
per data point). (b) To quantify the extracellular glutathione concentration, we separated the cells from their
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medium by using a filter that removes the cells (VWR: filter with 0.45-µm pores and a cellulose-acetate 
membrane). To ensure and verify that there were no cells left behind in the filtered media, we flowed the 
filtered media through a flow cytometer. The flow cytometer did not detect any cells in the filtered medium. 
We measured the glutathione concentration in the filtered medium that we took from each population 
shown in (a) with a commercial assay kit (see Methods). The extracellular glutathione concentration 
remained constant over time at a very low level for the no-growth-phase populations (red curve in (b)). 
The extracellular glutathione concentration increased over time during the log-phase growths (light blue 
curve in (b)). The extracellular glutathione concentration kept increasing over time after a population 
had stopped growing because it reached a stationary phase (due to reaching a carrying capacity) 
(dark blue curve in (b)). To check whether most of the extracellular glutathione was in the oxidized or 
the reduced form, we also determined the concentration of oxidized glutathione in the filtered media 
taken from a population that was incubated for 48 hours at 39.2 OC. For populations growing in log-
phase (light blue in (b)), we found that most of the extracellular glutathione was in the reduced form 
(77% ± 3% (mean with s.e.m., n = 3), approximately 3:1 ratio of reduced-to-oxidized form). For the 
non-growing populations in the no-growth phase (red in (b)), we found that most of the extracellular 
glutathione was in the oxidized form (25% ± 24% (mean with s.e.m., n=3), approximately 1:3 ratio of 
reduced-to-oxidized form). Hence, growing populations maintain an extracellular environment with 
more reduced glutathione than oxidized glutathione (note that the reduced form of glutathione, not the 
oxidized form, is able to remove reactive oxygen species through redox reactions). (c) By combining 
the results of (a) and (b), we determined the extracellular glutathione concentration as a function of the 
population-density. This plot shows that the no-growth-phase populations maintain, over time, a nearly 
constant population-density as well as a nearly constant extracellular glutathione concentration. While 
a population is growing in log-phase, the extracellular glutathione concentration keeps increasing while 
the population-density is increasing over time. The glutathione concentration continues to increase after 
the population has reached the carrying capacity and stops growing (i.e., during stationary phase). Also 
shown is the concentration of the extracellular glutathione for populations at 30 OC (grey: glutathione 
only detectable after the population enters a stationary phase - no secretion of glutathione during log-
phase growth). Also shown is the concentration of the extracellular glutathione for populations at 36 
OC (orange - same conclusion as in 30 OC). (d) As a control, we measured the concentration of the 
extracellular glutathione for populations incubated at 30 OC (blue bars) and 36 OC (yellow bars). We 
did not measure any extracellular glutathione for populations that were growing at log-phase at these 
temperatures (unlike in the case of higher temperatures such as 39.2 OC - see (c)). But as soon as these 
cells depleted glucose, they started to secrete glutathione, resulting in the glutathione accumulating 
in the extracellular medium over time while the cells were in stationary phase at 30 OC and 36 OC. 
This observation matches the fact that the media that we transferred from a population that was in 
stationary phase at 30 OC (16 hours after incubation in 30 OC) induced population growth at 39.2 OC 
(Supplementary Fig. 8h). Moreover, these results show that cells only secrete glutathione during log-phase 
growth at temperatures above 36 OC, consistent with our observation that the wild-type cells’ growths 

20



depend on the initial population-density only for temperatures above 36 OC (Supplementary Figs. 3-4). 
(e) Testing the specificity of the commercial glutathione assay kit used in (b-d). We added either a low 
or beyond-saturating (physiologically unrealistic) concentration of ascorbic acid into minimal media and 
then subjected these ascorbic-acid containing media to the glutathione assay kit. Note that ascorbic acid 
is also an antioxidant but one that the budding yeast does not produce. For physiological concentrations 
of ascorbic acid (e.g., 5 µM shown), the glutathione assay kit did not show any readings (i.e., it did not 
falsely report that glutathione was present). It only reported a false signal (i.e., presence of glutathione) 
for the non-physiological ascorbic-acid concentration of 5 mM - the kit falsely reported ~0.4 µM of non-
existent glutathione. Note that 0.4 µM is much lower than the >1 µM glutathione that we observed in the 
filtered media of cultures grown at the high temperatures. Thus, for our purpose, we can say that the 
glutathione assay kit is specific for detecting glutathione with negligible false positive readings. For each 
condition in (d-e), error bars represent the mean with s.e.m., n = 3 biological replicates (raw data are 
shown).
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Supplementary Fig. 12. Mathematical model reproduces heavy-tailed decay of number of 
survivors and predicts cell replications at extremely high temperatures (Related to Figure 5 and 
Extended Data Fig. 3). (a-b) Schematic summary that outlines the main features of the model. All cell 
populations eventually either grow exponentially (a) or go extinct (b). (c) Only the no-growth phase 
exists in the population-level phase diagram for temperatures above 40.3 OC. Populations are unable 
to grow because the maximum probability of replicating is always lower than the probability of dying for 
these temperatures. Thus, over time, a decreasing number of alive cells continuously accumulates the 
extracellular factor, which in turn increases the probability of replicating for those alive cells. Consequently, 
there is balance between a constant probability of dying and an initially lower probability of replicating that 
keeps approaching the probability of dying, evermore closing the gap between the two values (Extended 
Data Fig. 3). A competition between the two elements results in the population whose approach to 
extinction continuously slows down over time, leading to the number of survivors decreasing over time 
as a heavy-tailed (power-law-like) function (see Supplemental Notes). (b) Finally, a consequence of 
our model, which recapitulates all the main features of the experimental data, is that cells can, in fact, 
replicate at extremely high temperatures (e.g. 45 OC) albeit with vanishingly low probability.
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Supplementary Fig. 13. Chemically masking reduced glutathione in the extracellular environment 
stops population growths at high temperatures (Related to Figure 6a). (a) We used a thiol scavenging 
agent, 1-methyl-2-venylpyridinium (M2VP), to rapidly scavenge and mask all reduced glutathione (see 
Methods). Wild-type populations at 30 OC were incubated with the masking reagent at 0 µM, 250 µM, and 
750 µM. These populations exponentially grew at 30 OC. These results show that the masking reagent 
(M2VP) does not interfere with intracellular processes and only scavenges extracellular glutathione (note 
that log-phase cells do not secrete glutathione at 30 OC). (b-c) At 39.2 OC. Deterministically growing 
populations at 39.2 OC were subjected to 250 µM of the masking reagent after ~10 hours of incubation (b) 
or 750 µM of the masking reagent after 4.5 hours or 8.5 hours of incubation (c). All populations stopped 
growing after the masking reagent was added. These results show that removing extracellular, reduced 
glutathione stops all growths at a high temperature. Aliquots of these populations, from 39.2 OC, were 
transferred to 30 OC after the masking reagent was added (dotted light brown curves). These populations 
continued to exponentially grow to the carrying capacity in 30 OC. For (a-c), all colors show n = 4 replicate 
populations.  
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Supplementary Fig. 14. Mutants with reduced glutathione-export still secrete glutathione at high 
temperatures, which is not due to glutathione passively leaking out through cell membranes 
(Related to Figure 6d). We constructed a mutant strain by knocking out, in the wild-type strain, three 
genes that encode three major glutathione exporters: GEX1, GEX2 and ADP1 (see “Mutant yeasts” 
in the Methods section). (a) At 30 OC. Population-density (number of cells/mL) measured over time 
for populations of the mutant strain starting with different initial population-densities (n = 4 biological 
replicates). Glutathione export is unnecessary at 30 OC and growth of the mutant at 30 OC is not 
impaired compared to wild-type. (b) At 39.2 OC. Populations of the mutant strain with different starting 
densities (n = 3 biological replicates). For each population, we measured the extracellular glutathione 
concentration after ~30 hours of incubation (boxed data points). These measurements show that 
growing populations of the mutant strain still secrete glutathione into the extracellular media at high 
temperatures (1.59 ± 0.004 µM, mean with s.e.m.) while non-growing populations do not (0.12 ± 0.003 
µM, mean with s.e.m.). (c-d) Population-density measured over time for the mutant strain with different 
starting densities at 39.2 OC (purple curves, n = 3 biological replicates). For each population and for 
every time point, we took an aliquot of the liquid culture and incubated it with 1 µg/mL of propidium 
iodide for 20 minutes at room temperature. We measured the number of cells that were not stained
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by the propidium iodide with a flow cytometer (yellow curves). Cells stained by propidium iodide have lost 
their membrane integrity - propidium iodide flows into the cells and stains their DNA if and only if their 
membranes are damaged (50). The fact that almost all the cells in the populations were unstained by the 
PI (i.e., the purple and yellow curves nearly perfectly overlap in (c-d)) shows that glutathione does not 
simply leak out of the mutant cells - their membrane integrity was maintained during their growths at the 
high temperature. In other words, the mutant strain exports glutathione through other export mechanisms 
besides those mediated by the three genes that we knocked out.
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Supplementary Text

I. MODEL SUMMARY

This section summarizes the most important analytical results on the model for yeast growth. Please
refer to the subsequent sections below for further mathematical argumentation and all derivations. The
simplest stochastic model for yeast growth at high temperature is that, per unit time, cells replicate
and cells die with fixed probabilities. In such a linear model, the average behavior of the population is
independent of population size, and either all grow or go extinct. As the population density also dictates
whether a population grows or not, any such linear model is unable to reproduce the behavior of yeasts
we observed experimentally.
The presense or emergence of cells with a heritable trait, such as persister-like cells or heat-tolerant
mutants that can replicate at high temperature and pass this property on to their offspring, also cannot
explain our data. In our experiments, we use c = 8 replicate populations per condition, and the largest
inital population size is k = 25-fold larger than the smallest one. An upper bound for the probability to
observe the outcome of our experiments if the mechanism were a heritable trait is then given by (see
section III),

Pc,k ≤ kc ·
( 1

k + 1

)c+ c

k

= 0.26. (1)

We were able to produce these results many times (see Fig. 2a-c and Supplementary Figs. 3-5), such
that a model with a mechanism based on heritable traits cannot explain our experimental observations.
Hence, we need an extended non-linear stochastic model to reproduce the data. To this end we use
experimental observations (Fig. 4a-g). Our data suggests that cells secrete gluathione that allows for
cell growth when glutathione accumulates sufficiently (Fig. 4a-g and Supplementary Figs. 7-11). We
therefore extend the simplest model, by assuming that the probability of replicating of cells depends on
the concentration of extracellular glutathione that cells secrete at a constant rate.

The full model is as follows. Let At be the population-size of alive cells at time t with initial population-
size A0. Per unit time, any cell dies with probability pd(T ) linearly increasing with the temperature
T . Moreover, cells replicate with probability pa(t), where pa(t) is given by the maximum probability
of replicating µ that is scaled by a Hill function depending on the concentration of the extracellular
glutathione mt and constant k(T ). Finally, the extracellular glutathione accumulates by secretion of alive
cells with rate rm(T ). We describe the total population size at time t with Nt, and let Nbirth(t) and
Ndeath(t) be the number of births and deaths of cells at time t. Then the stochastic model describing
yeast growth at high temperature is given by,

Nbirth(t) ∼ Binom
(
At, pa(t)

)
,

Ndeath(t) ∼ Binom
(
At, pd(T )

)
,

At+1 = At +Nbirth(t)−Ndeath(t), (2)

pa(t) = µ · mt

k(T ) +mt
,

mt+1 = mt + rm(T )At,
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where A0 is the initial population-size, and the initial probability of replicating is given by pa(0) = 0. The
total population size changes according to,

Nt+1 = Nt +Nbirth(t). (3)

This model reproduces all the main features we observed experimentally (Fig. 5 and Extended Data Fig.
3). All simulations were run using one single set of parameters, choosing the temperature T and initial
population-size A0 appropriately. The parameters used to fit the model to our experimental data are the
maximum probability of replicating µ = 0.25 (approximating the maximum growth rate of our wild-type
yeast), K = k(T )/rm(T ) = 30, 000 (chosen such that order of magnitude of the phase boundary matches
the boundary we found experimentally, Fig. 2d) and the probability of dying depending on temperature,
pd(T ) = µ · T−Tmin

Tmax−Tmin
with Tmin = 37.9◦C and Tmax = 40.2◦C (chosen such that the endpoints of the

phase boundary match the boundary we found experimentally, Fig. 2d).
An deterministic approximation of the stochastic model allows us to derive an analytical expression

for the phase boundary between the deterministic growth phase and the no-growth phase (Section VI).
The analytical expression for the phase boundary is given by (simplified form of 72),

A0 ∝
K · p2d(T )
µ− pd(T )

. (4)

Hence, the initial population-size required for growth diverges as the probability of dying approaches
the probability of replicating in the model. Finally, the deterministic approximation is used to show that
- in the no-growth regime where the population does not grow - the decrease of the population of alive
cells is not appropriately described by exponential decay (Section VII). Instead, the instantaneous rate
at which the number of alive cells in the population changes continuously decreases. This is the result
of the probability of replicating approaching the probability of dying. Therefore the decay of the number
of alive cells in the population follows a heavy-tailed function, as we also find in our experiments (Fig.
3a-b and Supplementary Fig. 6).

II. SIMPLE MODEL DESCRIPTION

First, we consider the simplest stochastic model for yeast growth at high temperature. To this end, we
assume that all cells are identical and independent of each other (i.i.d.). Let At be a random variable
representing be the number of alive cells at time t. Per unit time, cells replicate with probability pa and
cells die with a probability pd(T ) that is monotonically increasing with temperature T . Then {At}t≥0

is a discrete-time Markov process describing yeast growth at high temperatures. Let Nt be the total
population size at time t and describe the number of births and deaths with Nbirth(t) and Ndeath(t)

respectively. Then the simple model is described by,

Nbirth(t) ∼ Binom
(
At, pa

)
, (5)

Ndeath(t) ∼ Binom
(
At, pd(T )

)
, (6)

At+1 = At +Nbirth(t)−Ndeath(t). (7)

with the total population size changing according to,

Nt+1 = Nt +Nbirth(t). (8)
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We can approximate the stochastic model as follows. As both cell replication and death follow a Binomial
distribution with parameters pa and pd(T ) respectively, we have,

E[At+1] = At + paAt − pd(T )At. (9)

By approximation for large At, we then obtain the following linear differential equation describing the
system,

At+1 −At ≈
(
pa − pd(T )

)
·At (10)

dA

dt
≈
(
pa − pd(T )

)
·A. (11)

It follows that, for a sufficiently large initial population of replicating cells A0, the number of alive cells
in the population can be modeled by,

A(t) = A0 · exp
(
(pa − pd(T ))t

)
. (12)

III. NECESSITY OF A NON-LINEAR MODEL

In this section we prove that we need a non-linear model to describe yeast growth at high temperature.
To see this, suppose we have a linear model. The parameters of this model are fixed (i.e. there is no
emergence of heritable traits such as persister-like cells or mutants), and all cells are autonomous
(independent). In our experiments, we find that, at 39◦C, populations with initially 400 cells/mL never
grow, while populations with initially 10, 000 cells/mL always grow (Fig. 2b). Now suppose we simulate
populations with initially 400 cells/mL with this linear model. We can run a simulation of this population
many times (say 25x), all with the same result (no growth). As cells are autonomous, we can combine
these twenty-five simulations into one single simulation without changing the outcome. Then we
simulate a population with initially 25x400 = 10, 000 cells/mL, and we would obtain the same result (no
growth). This is because the cells are autonomous: the cells do not care what size their population is.
This contradict our experimental results, as we find that the population of initially 10, 000 cells/mL always
grows (at 39◦C). This arguments shows that no linear model with fixed parameters can reproduce our
experimental data.
This can also be seen from the linear model from Section II. The behavior of the model, as described
by 12, is completely independent of the initial population-size of replicating cells A0. When pa > pd(T ),
the population will grow exponentially. In contrast, growth is impossible if pa < pd(T ) and then the
population goes extinct. Hence, yeast growth ceases at the temperature where the probability of dying
pd exceeds the probability of replicating pa for populations of any size. Thus, the linear model from
Section II cannot explain our experimental data.

What the arguments above do not consider, is the emergence of cells in a population with a heritable
trait. Next, we suppose that the ability to grow at a high temperature is a heritable trait (e.g., persisters
or heat-tolerant mutants). These are mechanisms in which one special cell with this heritable trait (e.g.
having its probability of replicating larger than its probability of dying, pd(T ) < pa) emerges in the
population and is responsible for giving rise to a whole lineage of growing cells. For convenience, we
will refer to cells that can give rise to a whole lineage of growing cells as “persisters” here. To see
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how such a mechanism cannot explain our data, note that the persisters must exist in sufficiently low
abundances in a population so that populations that start with low densities never grow. At the same
time, the persisters must occur frequently enough such that populations that start with high enough
densities always grow. As soon as a population has a persister, it will grow until it reaches a carrying
capacity due to the persister yielding a growing population. The following proof shows that, regardless of
the frequency at which the persisters initially are present or later emerge in a population, the probability
that such a mechanism reproduces our data is too small to be consistent with our data.
Experimentally we observe populations of cells of some initial size N0 that never grow (Fig. 2a-c and
Supplementary Figs. 3-5). Moreover, in our experiments we use a k = 25-fold difference in initial
population size between the largest and smallest populations. Thus, the largest populations initially
have k ·N0 and always grow. Consider populations of cells with intially N0 and k ·N0 cells. We assume
that cells are identical and independent of all other cells (i.i.d.), and that these cells are unable to grow
at high temperature (pd(T ) > pa). Let pg > 0 be the probability that a cell is or will become a persister
that will replicate at high temperature, and passes on this ability to replicate to its offspring (pd(T ) < pa).
Then the probability that the culture with an initial population of size N0 will never exponentially grow is
the probability that none of the cells becomes a persister, given by,

Pno growth(N0) = (1− pg)N0 . (13)

Moreover, the probability that the culture with initial population-size k · N0 will eventually exponentially
grow is the probability that some cell becomes a persister, given by,

Pgrowth(k ·N0) = 1− (1− pg)k·N0 . (14)

Hence, the probability to observe c cultures with initial population-size N0 never grow exponentially, and
simultaneously c cultures with initial population-size k ·N0 to all grow exponentially is given by,

Pc(N0) =
(
Pno growth(N0)

)c
·
(
Pgrowth(k ·N0)

)c
(15)

=
(
(1− pg)N0

)c
·
(
1− (1− pg)k·N0

)c
. (16)

Here Pc(N0) gives the probability to observe the outcome we observe in our experiments: all cultures
with low initial population-size do not grow, while all cultures with high initial population-size do grow
exponentially. To maximize the probability of observing our experimental outcome, we therefore want to
maximze Pc(N0) for the only free variable pg. To simplify notation, let x := (1− pg)N0 . Then,

Pc(N0) = xc · (1− xk)c (17)

=
(
x− xk+1

)c
. (18)

Taking the derivative to maximize Pc(N0),

dPc
dpg

=
dPc
dx
· dx
dpg

(19)

= c
(
x− xk+1

)c−1 ·
(
1− (k + 1)xk

)
(20)

·N0(1− pg)N0−1 · −1
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Notice that dPc

dpg
is zero for the trivial solutions pg = 0 and pg = 1. The nontrivial solution of dPc

dpg
= 0 is

described by,

1− (k + 1)xk = 0, (21)

which yields the following solution that maximizes Pc(N0),

x =
( 1

k + 1

) 1

k

. (22)

Therefore, the probability Pc(N0) that describes the outcome we observe in our experiments is maximized
for,

(1− pg)N0 =
( 1

k + 1

) 1

k

, (23)

hence the probability pg - the probability of being a persister cell - that maximizes the probability of
observing our experimental outcome is given by,

pg = 1−
( 1

k + 1

) 1

kN0 . (24)

Finally, by substititing 24 into 15 the actual probability Pc(N0) that describes the outcome we observe
in our experiments is bounded by,

Pc(N0) ≤
( 1

k + 1

) c

k ·
(
1− 1

k + 1

)c
(25)

= kc ·
( 1

k + 1

)c+ c

k

. (26)

This upper bound for the outcome we observe in our experiments only depends on the number of
replicate populations c per condition and the dilution factor k between these conditions. As described
above, we use c = 8 replicate populations per condition and a k = 25-fold difference between the
largest and smallest initial population-sizes in our experiments. Then an upper bound for the probability
to observe the outcomes of our experiments is given by substituting c = 8 and k = 25 into 25, leading to
Pc(N0) ≤ 0.26. As we consistently make these experimental observations (Fig. 2a-c and Supplementary
Figs. 3-5), the presense or emergence of persister cells cannot explain our observations.

IV. NON-LINEAR MODEL DEFINITION

We conclude that a simple, linear model 12 is insufficient to describe the behavior of our yeast
cells at high temperature. Moreover, our data suggests that cells secrete glutathione that accumulates
extracellularly and allows for cell growth when a sufficient concentration has been reached (Fig. 4a-g
and Supplementary Fig. 11). As our cells are genetically identical, we can safely assume that cells are
not independent (not autonomous). We therefore extend the simplest model with secretion of glutathione
and an effective probability of replicating that depends on the extracellular concentration of glutathione.

Similar to the simple model 12, let At be the population size of alive cells at time t. Per unit time, any
cell dies with probability pd(T ) depending on the temperature T . In contrast with the simplest model, we
now assume that the probability of replicating is not constant, based on our observation that population-
sizes can remain constant while still containing alive cells (random phase, Fig. 2a-b). Hence, assume
that cells replicate with probability pa(t), where pa(t) is some maximum probability of replicating µ scaled
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by a Hill function (Michaelis-Menten) depending on the concentration of extracellular glutathione mt and
constant k(T ). Finally, the extracellular glutathione accumulates by constant secretion of alive cells with
secretion rate rm(T ). Again describe the total population size at time t with Nt and let Nbirth(t) and
Ndeath(t) be the number of births and deaths of cells at time t. Then the full stochastic model is described
by,

Nbirth(t) ∼ Binom
(
At, pa(t)

)
,

Ndeath(t) ∼ Binom
(
At, pd(T )

)
,

At+1 = At +Nbirth(t)−Ndeath(t), (27)

pa(t) = µ · mt

k(T ) +mt
,

mt+1 = mt + rm(T )At,

with the total population size changing according to,

Nt+1 = Nt +Nbirth(t). (28)

The behavior of this model is completely different than the simplest model (Section II). Here, the
probability of replicating pa(t) increases (monotonically) over time as function of the number of alive
cells. Hence, as pa(0) = 0, there is no guarantee that any population of cells will grow exponentially,
unless the cells accumulate sufficient extracellular glutathione mt such that pa(τ) > pd(T ) for some time
τ > 0. This model 27 is studied in more detail with simulations (Fig. 5 and Extended Data Fig. 3) and
analytically with an approximation in the following sections.

V. DETERMINISTIC APPROXIMATION

We analytically study the model 27 next, for which we use a deterministic approximation to gain insight
into some key features of the model. In our model both cell replication and death follow a Binomial
distribution, such that the number of alive cells at the next time step can be estimated by,

E[At+1] = At + pa(t)At − pd(T )At. (29)

By approximation, we obtain the following nonlinear system of equations:

At+1 = At + pa(t)At − pd(T )At, (30)

pa(t) = µ · mt

k(T ) +mt
, (31)

mt+1 = mt + rm(T )At. (32)

First, we rewrite this system into a more convenient form. We rescale the extracellular glutathione as
Mt = mt/rm(T ) and K(T ) = k(T )/rm(T ). Here, K(T ) now represents the constant relative to the
production rate. Thus we obtain the following simplified determinist approximation of the stochastic
model 27 describing growth at high temperature,

At+1 = At ·
(
1 + pa(t)− pd(T )

)
(33)

pa(t) = µ · Mt

K(T ) +Mt
(34)

Mt+1 =Mt +At. (35)
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A. Interpretation

The relative change of the number of alive cells in the population is determined by the factor 1 +

pa(t) − pd(T ) which depends on time (probability of replicating) and temperature (probability of dying).
Here the number of alive cells on average increases when pa(t) > pd(T ) and on average decreases
when pa(t) < pd(T ). Notice that pa(t) ≤ µ for all t > 0 by choice of the Hill function. Moreover, as
pa(0) = 0, the population of alive cells in the population initially decreases exponentially (approximately
with a factor 1 − pd(T ) per unit time). For the maximum probability of replicating µ and probability of
dying pd we can destinguish three cases:

• pd < µ: In the limit of the concentration of the extracellular glutathione that accumulates (Mt →∞)
we have pa(t) → µ, such that pa(t) > pd for some t > 0 and therefore the population can grow
exponentially.

• pd ≈ µ: Here the probability of dying is very close to the maxium probability of replicating for a cell.
Hence, only large populations of alive cells can sustain the population as pa(t) → pd only when
the concentration of extracellular glutathione increases (Mt → ∞). The population cannot grow
exponentially.

• pd > µ: The probability of dying is always higher than the maxium probability of replicating, and the
population of alive cells on average decreases, and is guaranteed to go extinct.

B. Probability of dying depends linearly on temperature

The qualitative behavior of the model is fixed for a given probability of dying. Without loss of generality,
a sensible assumption is to let the probability of dying for a cell increase monotonically with temperature -
for two different temperatures, the probability of dying for the higher temperature is at least the probability
of dying for the lower temperature. Since we know that all populations grow at T = 37.9◦C and all
populations do not grow at T = 40.2◦C (Fig. 2d), the simplest assumption is to linearly increase the
probability of dying between these values such that pd(40.2) = µ. Any non-linear, but still montonically
increasing probability of dying as function of temperature yields the same qualitative behavior of the
model but displays these behaviors at different temperatures.

C. Glutathione secretion rate is constant

Instead of being a constant, one can set the glutathione secretion rate rm(T ) to be dependent on,
for example, the population size At or glutathione concentration mt. This changes the treshold K(T ),
which in turn merely shifts Hill function describing the probability of replicating pa(t) as function of
glutathione concentration 33. Thus, choosing a non-constant secretion rate or treshold concentration of
glutathione modifies the probability of replicating in the model. However, the qualitative behavior of the
model does not change upon a different, sensible, choice for the glutathione secretion rate rm(T ) (or
treshold K(T )). For example, we could choose rm(T ) to be linearly dependent on the population size
At - larger populations secrete more glutathione. Reversely, we could set the secretion rate rm(T ), for
example, inversely proportional to glutathione concentration mt - low glutathione concentrations trigger a
higher secretion rate than high glutathione concentrations. These choices for non-constant parameters
of the model increase or decrease the sensitivity of populations to the initial population size, but do
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not change the qualitative growth behavior of the model (i.e. the existence of no-growth, random growth
and deterministic growth). We therefore choose the simplest assumptions for our model by having these
parameters (rm(T ) and K(T )) constant.

VI. DESCRIPTION OF THE PHASE BOUNDARY

The goal of this section is to derive an description of the phase boundary of our model that we
observe in simulations (Fig. 5). In contrast to the simple model 12, the non-linear model 27 allows
for a population of cells with pa(0) < pd(T ) that can still exponentially grow for some t > 0 due to
the accumulation of extracellular glutathione. Although the model 27 is stochastic, we can use the
deterministic approximation 33 to gain some insight into the shape of the phase boundary and how
the behavior of the model depends on the variables of the model. To this end, notice that any cell
population eventually either exponentially grows or goes extinct. Therefore, without loss of generality,
assume that there exists some ε > 0 such that a cell population will (on average) grow exponentially
when pa(t) > εpd for some t > 0. Equivalently, a cell population will go extinct if pa(t) ≤ εpd for all t > 0.
Note that ε = 1 would suffice. For now we ignore the dependence of cell populations on temperature,
and write K = K(T ) and pd = pd(T ). The approach here is as follows: First we derive upper and lower
bound on the number of alive cells in the population, followed by bounds for the concentration of the
extracellular glutathione. Finally, all bounds are used to derive an approximate description of the phase
boundary in the simulated phase diagram (Fig. 5).

A. Bounds on number of alive cells

First, we determine a lower and upper bound on the population size of alive cells when the population
is not growing exponentially (1 + pa(t)− pd(T ) < 1 for 33). Notice that, by recursive substitution of 33,

At+1 = A0 ·
t∏

s=0

(
1 + pa(s)− pd

)
, (36)

where A0 is the initial population-size of alive cells at time t = 0. Moreover, the probability of replicating
is bounded by pa(s) ≥ 0, such that,

At = A0 ·
t−1∏
s=0

(
1 + pa(s)− pd

)
(37)

≥ A0 ·
t−1∏
s=0

(
1− pd

)
(38)

= A0

(
1− pd

)t
. (39)

Next, suppose that the cell population will go extinct. Then pa(s) < εpd for all s > 0 by assumption, and,

At = A0 ·
t−1∏
s=0

(
1 + pa(s)− pd

)
(40)

< A0 ·
t−1∏
s=0

(
1− pd(1− ε)

)
(41)

= A0

(
1− pd(1− ε)

)t
(42)
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Hence, when a cell population will go extinct, then the number of alive cells in the population at time t

is bounded by,

A0

(
1− pd

)t
≤ At < A0

(
1− pd(1− ε)

)t
. (43)

B. Bounds on concentration of extracellular glutathione

Next, we determine a lower and upper bound on the concentration of the extracellular glutathione
when the population of cells is not exponentially growing, similarly to the bound of the number of alive
cells. Recursive substitution of Mt and using 36 yields,

Mt+1 =

t∑
s=0

As (44)

= A0 +

t∑
s=1

As (45)

= A0 +A0

t∑
s=1

s−1∏
k=0

(
1 + pa(k)− pd

)
(46)

Moreover, we can bound the probability of replicating by pa(k) ≥ 0, such that,

Mt+1 ≥ A0 +A0

t∑
s=1

s−1∏
k=0

(
1− pd

)
(47)

= A0 +A0

t∑
s=1

(
1− pd

)s
(48)

= A0

t∑
s=0

(
1− pd

)s
. (49)

Equation 49 represents the first t + 1 terms of a geometric series that converges as its ratio satisfies
|1− pd(T )| < 1. Hence,

Mt+1 ≥ A0 ·
1−

(
1− pd

)t+1

pd
. (50)

Next, we seek an upper bound on the concentration of the extracellular glutathione. To this end, suppose
that pa(k) < εpd for all k > 0 such that the population is will go extinct by assumption. Then, starting
from 46, and substituting pa(k) < εpd and simplifying as in 49,

Mt+1 = A0 +A0

t∑
s=1

s−1∏
k=0

(
1 + pa(k)− pd

)
(51)

< A0 +A0

t∑
s=1

s−1∏
k=0

(
1− pd(1− ε)

)
(52)

= A0

t∑
s=0

(
1− pd(1− ε)

)s
. (53)

Again substituting the known sum of a geometric series we obtain,

Mt+1 < A0 ·
1−

(
1− pd(1− ε)

)t+1

pd(1− ε)
. (54)
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Hence, when the cell population goes extinct, 50 and 54 yield the following bounds for the concentration
of the extracellular glutathione Mt at time t,

A0 ·
1−

(
1− pd

)t
pd

≤Mt < A0 ·
1−

(
1− pd(1− ε)

)t
pd(1− ε)

. (55)

C. Growth versus extinction regime

The bounds 43 and 55 provide us with estimates of the number of alive cells in the population
and the concentration of the extracellular glutathione when knowing that the population will go extinct.
These bounds are usefull, as they provide the worst-case estimate for the accumulation of extracellular
glutathione and population-size of alive cells. Using these bounds we seek a contradiction next.
Assuming the worst-case scenario (extinction), we seek the initial population-size of alive cells A0 for
which the probability of replicating still exceeds the probability of dying before extinction. Hence the
population cannot (on average) go extinct as - even in the worst-case - the population will accumulate
sufficient extracellular glutathione to grow.

More specifically, we first determine a lower bound for the probability of replicating pa(t) at the time
the cell population is not yet extinct as function of A0. Here, the cell population is not yet extinct when
43,

At ≥ A0(1− pd)t = 1. (56)

Let τ be the time of extinction. Then, by solving 56, the time of extinction is lower bounded by,

τ >
log(1/A0)

log(1− pd)
. (57)

Substitution of 57 in the lower bound for the concentration of the extracellular glutathione yields 55,

Mτ ≥ A0 ·
1−

(
1− pd

)τ
pd

(58)

>
A0 − 1

pd
. (59)

Hence the worst-case concentration of the extracellular glutathione right before extinction is lower
bounded by 59. Finally, substitution of 59 into the probability of replicating in our model 33 gives, as
pa(t) is monotonically increasing in Mt,

pa(τ) > µ · A0 − 1

Kpd +A0 − 1
. (60)

Recall that we assume that the cell population will exponentially grow when pa(t) > εpd for some t > 0.
Therefore the cell population will at some point grow exponentially when 60,

pa(τ) > µ · A0 − 1

Kpd +A0 − 1
> εpd, (61)

Solving 61 for A0 yields the following lower bound on the initial population-size of alive cells required to
be able to grow exponentially,

A0 − 1 > K ·
εp2d

µ− εpd
. (62)
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The above equation was derived from a contradiction: we assumed that a population goes extinct, and
determine what minimum concentration of extracellularly accumulated glutathione it can produce. This
concentration yields a lower bound of the probability of replicating at the time of extinction. Finally we
derived a lower bound on the population size 62 for which this probability of replicating exceeds the
probability of death, and the population will grow. Thus the population cannot go extinct.

Next, again using 43 and 55, we determine an upper bound for A0 for which the cell population will
go extinct. Recall that the cell population will go extinct when pa(t) ≤ εpd for all t > 0. Specifically, when
τ is the time of extinction, we require pa(τ) ≤ εpd as pa(t) is monotonically increasing. The number of
alive cells when the population will go extinct is bounded from above by 43,

At < A0

(
1− pd(1− ε)

)t
. (63)

Then the cell population is extinct when t solves,

A0

(
1− pd(1− ε)

)t
= 1. (64)

Let τ be the time of extinction. Then, by solving 64 we obtain an upper bound for the time of extinction,

τ <
log(1/A0)

log
(
1− pd(1− ε)

) . (65)

Substitution into the upper bound for the concentration of the extracellular glutathione 55 when the
population goes extinct yields,

Mτ < A0 ·
1−

(
1− pd(1− ε)

)τ
pd(1− ε)

(66)

<
A0 − 1

pd(1− ε)
. (67)

The bound 67 gives an upper bound on the amount of extracellular glutathione a given population can
accumulate at the time of extinction. Finally, substituting 67 into the probability of replicating yields,

pa(τ) < µ · A0 − 1

Kpd(1− ε) +A0 − 1
. (68)

Recall that we assume that the cell population will go extinct when pa(τ) ≤ εpd. Therefore the cell
population indeed goes extinct if, by substitution into 68,

pa(τ) < µ · A0 − 1

Kpd(1− ε) +A0 − 1
< εpd. (69)

Solving 69 for A0 yields the following upper bound on the initial population-size of alive cells that
guarantees that the population goes extinct,

A0 − 1 < K ·
ε(1− ε)p2d
µ− εpd

. (70)

In summary, we now found a boundaries for the initial population-size of alive cells that guarantees
extinction 70 and for which the population is able to grow exponentially 62. For any initial population-
size of alive cells in between, growth and extinction are unpredictable. Hence the random phase in our
phase diagram (Fig. 5) is described by 62, 70,

K ·
ε(1− ε)p2d
µ− εpd

< A0 − 1 < K ·
εp2d

µ− εpd
. (71)
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The interpretation of these bounds is as follows. Suppose that we want cell populations to eventually
grow when pa(t) > εpd for some t > 0 and to go extinct when pa(t) ≤ εpd for all t > 0. Then, the initial
population-size of alive cells that describes the phase boundary scales according to 71,

A0 ∝ 1 +K(T ) ·
p2d(T )

µ− pd(T )
(72)

Moreover, for the cell populations that go extinct, a lower bound for the extinction time is given by 57.

VII. HEAVY-TAILED DECAY TO EXTINCTION

In this final section, we consider the extinction of cell populations. More specifically, we study the
instantaneous rate of death of the number of alive cells in the population. A common assumption is that
the number of alive cells follows some exponential decay over time. This is indeed the case when the
probability of replicating pa(t) is constant, as then 1+pa(t)−pd(T ) is a constant over time 33. In contrast,
in our model the probability of replicating pa(t) is monotonically increasing as a result of extracellular
glutathione accumulating over time.

A. The instantaneous decay rate

First, we derive the instantaneous rate at which the number of alive cells in the population decreases.
To this end, notice that the number of alive cells in the population is approximated by 33,

At+1 =
(
1 + pa(t)− pd(T )

)
·At. (73)

We will only be interested in the rate of decay of the number of alive cells at time very close to some
time t∗ > 0. We therefore assume that pa(t) at time t∗ is temperarily a constant, pa(t) = pa(t

∗) := pa,t∗

for t close to t∗, and thus independent of time. For insight, we further approximate 73 with the following
linear differential equation,

dA

dt
≈ At+1 −At

t+ 1− t
(74)

= At+1 −At (75)

= −
(
pd(T )− pa(t∗)

)
·At. (76)

Solving this differential equation yields,

At = At∗ exp
(
− (pd(T )− pa(t∗))(t− t∗)

)
, (77)

where At∗ is the population of alive cells at our chosen time t∗. For pd(T )−pa(t∗) > 0, the above equation
shows that the population at time t∗ indeed exponentially decays with instantaneous rate pd(T )−pa(t∗).
Thus, at each moment in time t∗, the number of alive cells in the population decreases exponentially
with some characteristic (instantaneous) rate pd(T )− pa(t∗). Crucially however, this instantaneous rate
is monotonically decreasing as we change t∗: the population dying continuously slows down over time.
This is because the probability of replicating increases towards the probability of dying. To see how the
probability of replicating increases towards the probability of dying, reconsider 77. We note that the rate
at which the number of alive cells in the population decreases, given by pd(T )− pa(t∗), increases from,

pd − pa(0) = pd, (78)
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at time t = 0 to (using the lower bound for the probability of replicating 61),

pd − pa(τ) ≤ pd − µ ·
A0 − 1

Kpd +A0 − 1
→ pd − µ, (79)

at the time of extinction of a large enough population (A0 → ∞). Thus, the rate at which the number
of alive cells in a large population decreases, changes from initially pd to pd − µ when the population
goes extinct. This shows that the rate of decay of the number of alive cells in the population is not
exponential, and can even halt in cases where the maximum probability of replicating is equal to the
probability of dying (µ = pd), as then, on average and subject to fluctuations, the number of births
matches the number of deaths in the population. Thus, our model explains how secretion of glutathion
leads to a heavy-tailed decay of the number of alive cells in the population. We study this decay of the
population of alive cells in more detail next.

B. The decay is not exponentially bounded

Next we will show that the decay of the number of alive cells in the population cannot be bounded with
an exponentially decaying function if sufficiently large populations can grow. To this end, we consider
the decay of the population of alive cells At. Our model states that 33,

At+1 = At ·
(
1 + pa(t)− pd

)
, (80)

such that the decay of the number of alive cells is given by recursively substituting 80 into itself 40,

At = A0 ·
t−1∏
s=0

(
1 + pa(s)− pd

)
. (81)

Now suppose that the number of alive cells At in the population decays exponentially or faster. We
can then find an upper bound for the number of alive cells in the population with some exponentially
decaying function. Let 0 < α < 1 be some constant and assume that the number of alive cells in the
population decays at least exponentially,

At ≤ A0 · αt. (82)

For At to be exponentially bounded, both equations 81 and 82 require that, for all t > 0,

A0 ·
t−1∏
s=0

(
1 + pa(s)− pd

)
≤ A0 · αt. (83)

Taking the logarithm and eliminating common terms yields the following condition for the decay of the
population of alive cells to be exponentially bounded. For some constant 0 < α < 1, we need,

1

t

t−1∑
s=0

log
(
1 + pa(s)− pd

)
≤ log(α), for all t > 0. (84)

In words, for the decay of A(t) to be exponentially bounded, we need log(1 + pa(t) − pd) to be on
average remain smaller than log(α) for some fixed 1 > α > 0. Recall the probability of replicating pa(t)

is monotonically increasing in time. Therefore we have pa(t) ≥ pa(τ) for any t ≥ τ and some τ > 0. We
can now split the function pa(t) into two time regimes for which we have a lower bound of the value
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pa(t): we can use the bound pa(t) ≥ 0 for t < τ and the bound pa(t) ≥ pa(τ) for t ≥ τ . Hence, we can
further bound the left hand side of condition 84 as,

1

t

t−1∑
s=0

log
(
1 + pa(s)− pd

)
(85)

≥ 1

t

τ∑
s=0

log(1− pd) +
1

t

t−1∑
s=τ

log(1 + pa(τ)− pd) (86)

=
τ

t
log(1− pd) + (1− τ

t
) log(1 + pa(τ)− pd). (87)

Substitution of the lower bound 87 into 84 yields the following condition for the decay of the population
of alive cells to be bounded by an exponentially decaying function,

τ

t
log(1− pd) + (1− τ

t
) log(1 + pa(τ)− pd) ≤ log(α), (88)

for all t > τ . For 0 < α < 1, we can distinguish the following cases:

• pd < µ: These parameters allow for growth in our model (experimentally, for T < 40.2◦C). We can
choose any A0 such that pa(τ) ≥ pd eventually for some τ > 0. Then 1 + pa(τ) − pd > 1 and
log(1 + pa(τ)− pd) > 0. Then, by substituting into 88,

τ

t
log(1− pd) <

τ

t
log(1− pd) + (1− τ

t
) log(1 + pa(τ)− pd). (89)

We notice that τ
t log(1− pd)→ 0 as t→∞ for τ fixed. Thus, for large enough populations and after

sufficient time, the condition 88 yields 0 ≤ log(α) which cannot be satisfied for 0 < α < 1. Thus,
the decay of the number of alive cells in the population cannot be bounded by an exponentially
decaying function when pd < µ.

• pd > µ: The probability of dying is higher than the maxium probability of replicating. We cannot
obtain pa(t) ≥ pd and the population is guaranteed to go extinct. At time of extinction τ > 0 we have
pa(τ) < pd and such that there exists some 1 > α > 0 for which the decay of the population of alive
cells is exponentially bounded (we can choose α = 1 + pa(τ)− pd in 83). However, the decay rate
of the number of alice cells in the population monotonically decreases over time up to the point of
extinction, starting with instantaneous rate pd(T ) at time t = 0 decreasing to pd(T )− pa(τ) at time
of extinction τ .

In summary, the number of alive cells in the population does not decrease exponentially over time.
Instead, the decay of the number of alive cells is heavy-tailed, as a result of the probability of replicating
approaching the probability of dying. When populations can grow (pd < µ), this heavy-tailed decay
cannot be bounded by an exponentially decaying function. Hence, the change of the number of alive
cells in the population cannot be appropriately modeled by an exponential function. Experimentally, we
find that the decay of the population of alive cells is indeed heavy-tailed (Fig. 3a-b and Supplementary
Fig. 6), and appropriately modelled by a power-law function.
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