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Abstract We discuss a new type of topological defect in XY systems for which the
O(2) symmetry is broken in the presence of a boundary. Of particular interest is
the appearance of such defects in nanomagnets with a planar geometry. They are
manifested as kinks of magnetization along the edge and can be viewed as halfvor-
tices with winding numbers ±1/2. We argue that the halfvortices play a role in flat
nanomagnetics equally important to that of ordinary bulk vortices. We show that
domain walls found in experiments and numerical simulations in strips and rings
are composite objects containing two or more elementary defects. We also discuss a
closely related system: the two-dimensional smectic liquid crystal films with planar
boundary condition.

1 Introduction

It is well known that topological defects play an important role in catalyzing the
transitions of physical systems with spontaneously broken symmetries [1, 2]. For
instance, in nanorings made of soft ferromagnetic material, the switching process
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usually involves creation, propagation, and annihilation of domain walls with com-
plex internal structure [3, 4]. We have pointed out in a series of papers [5, 6, 7]
that domain walls in nanomagnets of planar geometry are composed of two or more
elementary defects including ordinary vortices in the bulk and fractional vortices
confined to the edge. As an example, the simplest domain wall in a magnetic strip
consists of two edge defects with opposite winding numbers n = ±1/2.

In a nanomagnet with the geometry of a disk, the strong shape anisotropy (due
to dipolar interaction) forces the magnetization vector M to lie in the disk plane,
effectively making the magnet a 2D XY system. At the edge of the film, dipolar
interaction further tries to align the spins to either of the two tangential directions of
the edge: m̂ = M/|M| = (cosθ ,sinθ )± τ̂ . The reduction of ground state symmetry
from O(2) to a discrete Z2 allows for a new type of topological defect confined
to the edge. These edge defects are manifested as kinks in magnetization m̂ along
the boundary. In systems with discrete symmetry, such as the Ising ferromagnet,
kinks are topological defects connecting different ground states. Their topological
properties are rather simple [1]. Nevertheless, as two of us pointed out in Ref. [5],
the edge defects can be viewed as halfvortices and have nontrivial topological charge
related to the winding number of vortices in the bulk.

For a bounded flat nanomagnet, the winding number of vortices in the bulk is
not a conserved quantity. This is illustrated by an example shown in Fig. 1, where a
bulk vortex with winding number n = +1 is absorbed into the edge. Conservation of
topological charges can be restored by assigning winding numbers to edge defects.
In this case there are two such kinks at the edge of the film. The process shown
in Fig. 1 then expresses the annihilation of an +1 bulk vortex with two − 1

2 edge
defects. Numerical simulations exhibiting similar annihilation of bulk vortex with
edge defects can be found in Ref. [5].

The winding number of a single edge defect is defined as the line integral along
the boundary ∂Ω [5]:

n = − 1
2π

∫
∂Ω
∇(θ −θτ) ·dr = ±1

2
. (1)

Examples of edge defects with winding numbers ± 1
2 are shown in Fig. 2. For a

closed boundary the sum of the winding numbers of edge defects is also given by
the above integral, but instead of integrating around one edge defect, the integral is
carried out along the entire boundary. It was shown in Ref. [5] that this integral is
related to the sum of winding numbers of vortices in the bulk. In general, for a film
with g holes, we obtained

edge

∑
i

ni +
bulk

∑
i

ni = 1−g. (2)

Here the winding numbers ni are integers for bulk defects and half-integers for
edge defects. This conservation law has important implications for the dynamics of
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Fig. 1 A vortex (n = +1)
absorbed by the edge can
be viewed as its annihilation
with two − 1

2 edge defects.
The annihilation results in
a uniform magnetization
pointing to the right

−1/2 −1/2+1

magnetization in nanomagnets [5]. As will be discussed in Section 3, defects with
large winding numbers carry significant magnetic charge and thus are unfavored
energetically in flat nanomagnets. Most of the intricate textures observed involve
only bulk vortices with winding number n = ±1 and edge defects with n = ± 1

2 .
Topological considerations also place important constraints on the possible struc-

ture of the domain walls in magnetic nanostrips [6]. Such domain walls play an
important role in the switching dynamics of magnetic nanorings [16]. Examples of
such domain walls are shown in Figs. 3 and 5. Since edge defects are kinks of mag-
netization along the boundary, a domain wall in a magnetic strip must contain an
odd number of kinks at each edge. Furthermore, the angle of magnetization rotation
along the two edges must be compensated by the winding number of the bulk. Con-
sequently, the total topological charge including contributions of vortices and edge
defects is zero.

The edge defects in nanomagnets are analogs of boojums at the surfaces and
interfaces of superfluid 3He [8, 9]. In general, “boojum” refers to a topological
defect that can live only on the surface of an ordered medium [10]. Boojums were
also predicted and observed in liquid crystals [11]. An interesting system which
is closely related to our study of flat nanomagnets is the two-dimensional (2D)
smectic C films. The vector nature of the order parameter m̂ is important to the
confinement of halfvortices at the edge. For example it is well known that vortices
with half-integer winding numbers are allowed to exist in the bulk of nematic liquid
crystals. On the other hand, in 2D smectic C films, the in-plane ordering of molecu-
lar orientations is described by a 2D unit vector ĉ parallel to the smectic layers and
pointing to the tilt direction [12]. Because rotating a tilted molecule by 180◦ around
the normal of layers does not return it to its original configuration, this unit vector
ĉ, like the magnetization m̂, is a true vector. The system thus has edge-confined
halfvortices similar to those in flat nanomagnets. We will discuss their structure in
Section 4.

In this article we shall review the structure and energetics of halfvortices in nano-
magnets. In contrast to the determination of the structure of topological defects
in superfluids or liquid crystals where the energy is dominated by short range
interactions, finding solutions of the vector field m̂(r) for topological defects in
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nanomagnets is considerably more difficult due to the nonlocal nature of dipolar
interaction. We approached this problem from two opposite limits dominated by the
exchange and dipolar interactions, respectively. The results are presented in Sec-
tions 2 and 3. Edge defects of smectic C films are discussed in Section 4, where we
also point out the similarities and differences of the two models. We conclude with
a summary of our major results in Section 5.

2 Exchange Limit of Flat Nanomagnets

The magnetic energy of a ferromagnetic nanoparticle has two major contributions:
the exchange energy A

∫ |∇m̂|2 d3r and the dipolar energy (µ0/2)
∫ |H|2 d3r. The

magnetic field H is related to the magnetization through Maxwell’s equations, ∇×
H = 0 and ∇ · (H + M) = 0. Here we disregard the energy of anisotropy, which is
negligible for soft ferromagnets such as permalloy.

Analytical treatment of topological defects is generally impossible due to the
long range nature of dipolar interaction. One usually minimizes the energy numeri-
cally to find stable structures of the magnetization field. Nevertheless exact solutions
are possible in a thin-film limit [13, 14]: t 
 w 
 λ 2/t 
 w log(w/t) defined for a
strip of width w and thickness t. Here λ =

√
A/µ0M2 is the length scale of exchange

interaction. In this limit the magnetization only depends on the in-plane coordinates
x and y, but not on z. Furthermore, the magnetic energy becomes a local functional
of magnetization [13, 14]:

E[m̂(r)]/At =
∫
Ω
|∇m̂|2 d2r +(1/Λ)

∫
∂Ω

(m̂ · n̂)2 dr. (3)

Here Ω is the two-dimensional region of the film, ∂Ω is its line boundary, n̂ ⊥ τ̂ is
unit vector pointing to the outward normal of the boundary, andΛ = 4πλ 2/t log(w/t)
is an effective magnetic length in the thin-film geometry. This is the familiar XY
model [1] with anisotropy at the edge resulting from the dipolar interaction. Mini-
mization of (3) with respect to θ yields the Laplace equation ∇2θ = 0 in the bulk
and boundary condition n̂ ·∇θ = sin2(θ +θe)/Λ at the edge.

Topological defects that are stable in the bulk are ordinary vortices with inte-
ger winding numbers, which are well known in the XY model [1]. The boundary
term of model (3) introduces yet another class of topological defects that have a
singular core outside the edge of the system. To be explicit, consider an infinite
semiplane y > 0. Solutions satisfying the Laplace equation in the bulk and the
boundary condition ∂yθ = sin2θ/Λ at the edge y = 0 are [5, 13]

tanθ (x,y) = ± y +Λ
x−X

. (4)

The singular core is at (X ,−Λ), distance Λ outside of the edge. Figure 2 shows the
magnetization fields of Eq. (4). As can be easily checked using Eq. (1) the winding
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+1/2 −1/2

Fig. 2 Edge defects with winding numbers n = + 1
2 (left) and − 1

2 (right) in the exchange limit

numbers of these solutions are ± 1
2 , respectively. The halfvortex cannot live in the

bulk: as its singular core is moved inside the boundary, a string of misaligned spins
occurs which extends from the core of halfvortex to the boundary [5]. The edge thus
provides a linear confining potential for halfvortices.

In the limit Λ/w → 0, magnetization at the edge is forced to be parallel to the
boundary, m̂ = ±τ̂. By exploiting the analogy between XY model and 2D electro-
statics, one can use the method of images to deal with the effects introduced by
the boundary [1, 5]. In this analogy the vortex is mapped to a point charge whose
strength is given by the corresponding winding number. However, unlike in elec-
trostatics, the “image” charge induced by the boundary has the same sign as the
original. The above solution (4) with Λ = 0 looks just like a n = ±1 vortex with its
core sitting at the edge. The assignment of half-integer winding number n = ± 1

2 to
the edge defect is thus also consistent with the electrostatics analogy in the sense
that the winding number is doubled by the reflection at the edge [5].

An exact solution for a domain wall was also obtained in this limit [5]. Consider
a strip |y| < w/2. It has two ground states with uniform magnetization: θ = 0 or π .
Domain walls interpolating between the two ground states are given by

tanθ (x,y) = ± cosky
sinhk(x−X)

, (5)

where the wavenumber k ≈ π/(w+2Λ). The magnetization field of Eq. (5) (shown
in Fig. 3) is reminiscent of ‘transverse’ domain walls (Bottom panel of Fig. 3)
observed in micromagnetic simulations [15].

Unlike domain walls (kinks) in Ising magnet, a domain wall in a nanomag-
net, e.g. Eq. (5), is a composite object containing two edge defects with opposite
winding numbers ± 1

2 . The singular cores of the two halfvortices reside outside
the film, a distance Λ away from the edges. One can understand the stability of
the domain wall using the electrostatics analogy: the attractive ‘Coulomb’ force
pulling together the two halfvortices is balanced by the confining force from the
edges.
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Fig. 3 Top: Magnetization of the head-to-head domain wall solution (5). It is composed of two
edge defects with opposite winding numbers ± 1

2 . Bottom: A transverse domain wall observed in
a micromagnetic simulation using OOMMF [20] in a permalloy strip of width w = 80 nm and
thickness t = 20 nm

The total energy of the domain wall solution Eq. (5) evaluates to E ≈ 2πAt(1 +
log(w/πΛ)). As expected for the XY model, the exchange energy depends loga-
rithmically on the system size, the width of the strip w in our case. It also depends
logarithmically on a short distance cutoff which is provided byΛ here. After restor-
ing the energy units and expressingΛ in terms of the relevant parameters, we obtain
the following domain wall energy in the exchange limit

EDW ≈ 2πAt log
(ewt log(w/t)

πλ 2

)
. (6)

The energy depends linearly on the thickness of the film t and only weakly (loga-
rithmically) on the width. These relations are important to the understanding of the
hysteresis curves of asymmetric magnetic nanorings [16].

3 Dipolar Limit of Flat Nanomagnets

The thin-film limit discussed in the previous section is inaccessible to most experi-
mental realizations of nanomagnets, in which the dipolar interaction is the primary
driving force. In this section we discuss the structure and energetics of topologi-
cal defects and domain walls in the opposite limit where the energy is dominated
by the dipolar interaction. Our strategy here is first to find structures which min-
imize the magnetostatic energy (µ0/2)

∫ |H|2 d3r and then to include exchange
interaction as a perturbation. However, energy minimization in the dipolar limit
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is relatively difficult due to following reasons. Firstly, as opposed to the local
exchange interaction, the dipolar interaction is long-ranged. Secondly, in many cases
the magnetostatic energy has a large number of absolute minima. One thus has to
search among these minima for one with the lowest exchange energy, making it a
degenerate perturbation problem.

The magnetostatic energy of a given magnetization field m̂(r) can also be
expressed as the Coulomb interaction of magnetic charges with density ρm(r) =
−M0∇ · m̂, where M0 is the saturation magnetization. Being positive definite, the
magnetostatic energy has an absolute minimum of zero, which corresponds to a
complete absence of magnetic charges. A general method to obtain the absolute
minima of magnetostatic energy was provided by van den Berg in 1986 [17]. For
magnetic films with arbitrary shapes, his method yields domains of slowly varying
magnetization separated by discontinuous Néel walls. In the following we look for
structures that have the desired winding number and are free of magnetic charges,
i.e. ∇ · m̂ = 0 in the bulk and n̂ · m̂ = 0 on the boundary.

We start by examining the vortex solutions of XY model. In polar coordinate, a
vortex with winding number n is described by θ (x,y) = nφ +θ0, where θ0 is a con-
stant and φ = arctan(y/x) is the azimuthal angle. Among these solutions, only the
n = 1 vortex with θ0 = π/2 has zero charge density and survives in the dipolar limit.
Its energy then comes entirely from the exchange interaction and diverges logrith-
mically with system size R: E ≈ 2πAt log(R/λ ). Here the short distance cutoff is
given by the exchange length λ .

The antivortex solutions of the XY model always carry a finite density of mag-
netic charge and thus are not a good starting point to obtain the n = −1 defect in
the dipolar limit. Fortunately, a magnetization field with winding number −1 and
free of bulk charges is realized by a configuration known as the cross tie (top panel
of Fig. 4) [6, 18]. It consists of two 90◦ Néel walls normal to each other and inter-
secting at the singular core. The magnetization field of an antihalfvortex (winding

Fig. 4 An antivortex (left), and a − 1
2 edge defect (right) in the dipolar limit
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number − 1
2 ) is obtained by placing the core of a cross tie at the edge of the film

(bottom panel of Fig. 4). Since the magnetization along the edge is parallel to the
boundary, the structure is also free of surface charge. As one moves from left to
right along the edge the magnetization rotates counterclockwise through π . This is
in agreement with the definition (1) for an antihalfvortex.

The energy of an antivortex or an antihalfvortex grows linearly with the length
of the Néel walls L emanating from it:

E ∼ σ tL+ Ecore (7)

The surface tension of the wall σ has contributions from both exchange and dipolar
interactions. In magnetic films with thickness exceeding the Néel-wall width (of
order λ ), it is given by [6]

σ = 2
√

2(sinθ0 −θ0 cosθ0)A/λ , (8)

where 2θ0 is the angle of magnetization rotation across the wall. In thinner films
(t ≤ λ ) the magnetostatic term becomes substantially nonlocal and the Néel walls
acquire long tails [19].

There is no charge-free configuration for the + 1
2 edge defect. In addition, one

could also observe from micromagnetic simulations that most of the magnetic
charges of a transverse domain wall in a strip is accumulated around the + 1

2 defect.
Thus, in the dipolar limit, the magnetically charged + 1

2 defect is prone to decay into
a − 1

2 edge defect and +1 vortex in the bulk. We next turn to the discussion of the
structure of domain walls in this limit.

Fig. 5 Top: A magnetization configuration free of bulk magnetic charges, −∇ ·M = 0, and con-
taining two −1/2 edge defects and a +1 vortex in the middle. Parabolic segments of Neel
walls are shown by dashed lines. Bottom: A head-to-head vortex wall obtained in a micromag-
netic simulation using OOMMF [20] in a permalloy strip of width w = 500 nm and thickness
t = 20 nm
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An intrinsic problem arises when one tries to apply van den Berg’s method to
find the structure of domain walls. That is because a head-to-head domain wall
carries a fixed nonzero amount of magnetic charge: Qm = 2M0tw. However, these
magnetic charges tend to repel each other and spread over the surface of the sam-
ple, much the same as the electric charges in a metal. Based on this principle, we
provided in Ref. [7] a construction of the head-to-head domain wall that is free of
bulk magnetic charges. All of the charge Qm is expelled to the edges. The resulting
structure is shown in the top panel of Fig. 5. It resembles the structure known as
the ‘vortex’ domain wall (bottom panel of Fig. 5) predicted to be stable in regimes
dominated by dipolar interaction [15]. Both structures contain two − 1

2 edge defects
sharing one of their Néel walls and a +1 vortex residing at the midpoint of the
common wall.

The variational construction contains charge-free domains with uniform and
curling magnetization separated by straight and parabolic Néel walls. In a strip
|y| < w/2, the two − 1

2 edge defects share a Néel wall x = y with the vortex core
residing at (v,v) is located. The two curling domains in the regions ±v < ±y < w/2
are separated by parabolic Néel walls (x− v)2 = (2y±w)(2v±w) from domains
with horizontal magnetization; they also merge seamlessly with other uniform
domains along the lines x = v and y = v.

The location (v,v) of the +1 vortex on the shared Néel wall is a free parameter
of our variational construction. The structure remains free of bulk charge as the
vortex core moves along the diagonal x = y. When it reaches one of the edge, its
annihilation with the − 1

2 edge defect creates a widely extended + 1
2 edge defect. The

resulting structure (top panel of Fig. 6) is topologically equivalent to the transverse
domain wall (bottom panel of Figs. 3 and 6) discussed in the previous section.

Fig. 6 Top: A model vortex wall when the vortex is absorbed by the edge forming an extended
+ 1

2 edge defect along the upper boundary. Bottom: Transverse wall observed in micromagnetic
simulation
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The equilibrium structure for given strip width w and thickness t is determined
by minimizing the total energy of the composite domain wall with respect to vortex
coordinate v. The total energy contains the following terms. (a) The exchange energy
of the two curling domainsΩ around the vortex core. It is given by At

∫
Ω (∇θ )2d2r

and of the order At log(w/λ ). (b) The energy of Néel walls, which can be computed
as a line integral t

∫
σ(�)d�, where d� is a line element of the wall. The surface

tension σ , which depends on the angle of spin rotation across the wall, is given by
Eq. (8). This term is of order Atw/λ . (c) The magnetostatic energy coming from the
Coulomb interaction of magnetic charges spreading along the two edges. It is of the
order Aw(t2/λ 2) log(w/t).

By combining the above three contributions, the total energy curve E(v) for a
fixed width w and varying thickness t is shown in Fig. 7. For substantially wide and
thick strips, the curve attains its absolute minimum as the vortex is in the middle of
the strip, in agreement with numerical simulations [15]. A local minimum develops
with the vortex core at the edge of the strip as the thickness decreases corresponding
to the transverse wall shown in the bottom panel of Fig. 6. The transverse wall
becomes the absolute minimum as the thickness is further reduced and the vortex
wall (v = 0) is locally unstable. It should be noted that the above calculation for thin
films, e.g. t = 1 nm, is only an extrapolation. For films with small cross section (but
not in the exchange limit), our variational approach can not be trusted. Nonetheless,
the method is illustrative and indeed shows that the three-defects wall structure is
unstable when approaching the exchange limit.
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Fig. 7 Energy of the vortex domain wall as a function of the vortex position v at a fixed strip width
w = 50 nm for several thicknesses t
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4 Halfvortices in Smectic Films

The XY model discussed in the thin-film limit preserves a symmetry between topo-
logical defects with opposite winding numbers, namely, ±1 vortices have exactly
the same energy in model (3) (so do ± 1

2 edge defects). Since vortices of oppo-
site winding numbers carry different magnetic charges, the degeneracy is lifted in
thicker and wider strips where the dipolar interaction becomes more important. The
configuration of the topological defects in the extreme dipolar limit discussed previ-
ously clearly shows this asymmetry. One can also break this symmetry by assigning
different penalties to splay (∇ · m̂ �= 0) and bending (∇× m̂ �= 0) deformations:

E[m̂(x)] =
∫
Ω

[K1(∇ · m̂)2 + K2(∇× m̂)2]d2r

+(1/Λ)
∫
∂Ω

(n̂ · m̂)2 dr, (9)

In the units where the energy is dimensionless, the elastic constants Ki are also
dimensionless, whereas the edge anisotropy 1/Λ scales as the inverse length. With
the unit vector m̂ identified with the ĉ-director field, this energy functional describes
the elastic energy of a chiral smectic film [21] or a Langmuir monolayer [22] with
planar boundary conditions.

The case K1 = K2 corresponds to the XY model, which represents the exchange
limit. By choosing K1 > K2 we discourage splay, which is similar to a penalty for
magnetic charges in the bulk. The dipolar limit is similar to the regime where the
bend energy is small compared to those of splay and edge anisotropy. In what fol-
lows we discuss the structure and energetics of topological defects in the extreme
dipolar limit, K2 = 0.

The +1 vortex solution θ (r) = φ +π/2 remains an energy minimum of model
(9) for arbitrary K1 and K2. The +1/2 edge defect in the XY limit, Eq. (4) with the
‘+’ sign, also remains a stable configuration for arbitrary Ki and Λ except that the
singular core is pushed further outside the boundary, a distance (1+ε)Λ away from
the edge. Here ε = (K1 −K2)/(K1 + K2).

Since the bulk term of the energy functional (9) does not have an intrinsic length
scale, an exact scale-invariant solution for an antivortex has been obtained in the
‘dipolar’ limit K2 = 0:

θ (x,y) = φ − arcsin(
√

2 sinφ), (10)

where φ = arctan(y/x) is the azimuthal angle. The solution is singular at φ =±π/4,
where the first derivative dθ/dφ diverges. A complete solution of the antivortex
nevertheless can be obtained by continuing the above solution outside of the interval
|φ | < π/4 periodically. The result is shown in Fig. 8(a).

Analytical solutions for antihalfvortex for arbitrary Λ is yet to be found. In the
limit Λ → 0 achieved in boundaries with very strong anchoring force, the unit vec-
tor m̂ is forced to be parallel to the edge. In this limit, the − 1

2 edge defect can be
constructed following the same trick for antihalfvortex in the dipolar limit of nano-
magnets. The resulting configuration is shown in Fig. 8(b). Compared with their
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(a) (b)

Fig. 8 An antivortex (a), and a − 1
2 edge defect (b) in the elastic model with K1 = 1, K2 = 0, and

Λ = 0

counterparts in the XY model, the antivortex and antihalfvortex in Fig. 8 are closer
to the cross tie configuration (or half of it) shown in Fig. 4.

Although topological defects of the generalized elastic model show some simi-
larities with those of the magnetic problem in the dipolar limit, there is an important
difference regarding the scaling of their energy with system size. Since solution
(10) is scale-invariant, the energy of the defects also diverges logrithmically with
system size R: E ∼ const×K1 log(R/a). Here a is a short distance cutoff. In the
case of − 1

2 edge defect, a is of the order of Λ . However, as discussed in the pre-
vious section, the energy of both antivortex and antihalfvortex scales linearly with
the length of N eel wall. The nonlocal dipolar interaction in the magnetic problem
results in a natural length scale λ =

√
A/µ0M2. By contrast, there is no such length

scale in the elastic model (9), so the dependence of the energy on the system size is
logarithmic.

5 Conclusion

We have discussed the topological properties of edge defects in XY systems with
a broken O(2) symmetry at the boundary. In particular, we discussed two physical
systems containing such edge defects: the 2D smectic C films and nanomagnets with
a planar geometry. Since spins at the boundary have two degenerate preferred direc-
tions (parallel or antiparallel to the boundary), the edge defects are manifested as
kinks of magnetization along the edge. Moreover, they carry half-integer winding
numbers and thus can be viewed as half-vortices confined at the edge. Conserva-
tion of the winding number can only be established by including contributions from
the edge defects. As we have pointed out before [5, 6, 7], edge defects should be
included along with ordinary vortices as the elementary topological defects in flat
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nanomagnets. Indeed, domain walls in flat nanomagnets are composite objects con-
sisting of two or more of the elementary defects. These walls play an important role
in the dynamics of magnetization, especially in magnetic switching in strip or ring
geometries.

We have also reviewed structures and energetics of the edge defects in two
opposite limits dominated by the exchange and dipolar interactions, respectively.
Analytical solutions of halfvortices and transverse domain walls were obtained in
a thin-film limit where the exchange interaction is the dominant force determining
the shape of topological defects. In this limit, the magnetic problem is reduced to
the familiar XY model with an anisotropy at the edge. Domain walls stable in this
regime are composed of two edge defects with winding number ± 1

2 . By analogy
with 2D electrostatics, the stability of transverse domain wall can be understood
as resulting from a balance of the attractive Coulomb force between the oppositely
charged halfvortices and the confining force from the edges.

Energy minimization is relatively difficult in the opposite limit dominated by
the nonlocal dipolar interaction. Nevertheless, by treating the exchange interaction
as a perturbation, we are able to find structures of topological defects stable in
this regime. The +1 vortex of XY model with circulating magnetization remains a
stable defect in the dipolar limit. The −1 vortex survives in this limit but is severely
deformed; it has the cross tie structure consisting of two 90◦ Néel walls intersecting
at the singular core. The configuration of the − 1

2 edge defect is constructed by plac-
ing the core of a cross tie at the boundary. The + 1

2 defect carries a finite amount of
magnetic charge and is unstable in this limit.

A vortex domain wall composed of two − 1
2 edge defects and a +1 vortex in the

bulk is stable in the dipolar limit. We have presented a variational construction of the
vortex domain wall which is free of bulk magnetic charge. By varying the location
of the center +1 vortex, the construction interpolates between the vortex wall and
the transverse wall. Variational calculation of the domain wall energy reveals that
the vortex wall is indeed stable in the dipolar limit whereas it becomes an energy
maximum in thin and narrow strips.

Finally, we have discussed structures of topological defects in an elastic model
which generalizes the XY model of the thin-film limit. Calculations in this model are
simplified by the replacement of non-local interactions between magnetic charges
by a term that penalizes the existence of magnetic charge in a local fashion. This
model is strictly applicable to smectic C films, but may provide insight into magnetic
configurations. In particular, the allowed topological defects are the same in both
systems, due to the identical group structure of the two models both in the bulk and
on the boundary.
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