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Introduction: Cells that simultaneously secrete and sense the same signaling molecule are ubiqui-
tous. Bacteria sense a quorum by secreting and sensing an autoinducer; T cells induce a monoclonal 
immune response by secreting and sensing a cytokine; and epithelial cells can become cancerous 
through misregulated secreting and sensing of a growth factor. Many of these cells use the same 
core signaling-circuit motif to realize a diverse repertoire of biological functions. The full range of 
functions that the “secrete-and-sense” circuit motif can achieve, and the design principles underly-
ing its functional fl exibility, remain poorly understood.

Methods: We constructed a synthetic secrete-and-sense circuit motif in budding yeast that enabled 
the yeast to secrete and sense the mating pheromone. We systematically altered key parameters of 
the circuit—secretion rate, receptor abundance, positive feedback linking sensing with secretion, and 
signal degradation—to reveal how they enabled various cellular behaviors. Through single-cell mea-
surements, we assessed the degree to which a secrete-and-sense cell responded to its own secreted 
signal (self-communication) versus the signal secreted by its neighbors (neighbor communication) to 
achieve diverse cellular behaviors. 

Results: We show that the core secrete-and-sense circuit motif can precisely tune the cell’s “sociabil-
ity”—the cell’s degree of self- versus neighbor communication—using one molecule and receptor 
pair. At the extremes, the circuit enables purely social behaviors (e.g., quorum sensing) in which 
cells mainly use neighbor communication, or purely asocial behaviors (e.g., epidermal growth fac-
tor signaling in epithelial cells) in which cells mainly use self-communication, commonly referred 
to as “autocrine signaling.” Crucially, we uncover rich behaviors that rely on simultaneous self- and 
neighbor communication, including some that have been observed in nature but whose mechanistic 
origins have been unclear. For example, positive feedback that links sensing with secretion can yield 
a bistable behavior in which all cells in the population act as an ensemble to be either quiescent or 
maximally activated. Incorporation of an active signal degradation enables bimodal activation, in 
which the different proportions of the population bifurcate into distinct activation states, with the 
ratio of the two states determined by simultaneous self- and neighbor communication. This behavior 
explains how isogenic cells can differentiate into distinct states with defi ned ratios. 

Discussion: We integrate simple models, single-cell measurements, and a bottom-up synthetic biol-
ogy approach to reveal a range of population-level behaviors that arise from the core secrete-and-
sense circuit motif. We determine how the intracellular circuit elements result in distinct classes of 
self- and neighbor communication, and in turn leads to various population-level behaviors. Our work 
reveals “phase diagrams” that summarize the relationship between the circuit architecture and dif-
ferent phases of population-level 
behaviors for the secrete-and-
sense circuit. Our fi rst-principles 
approach may be generalized to 
reveal relationships between the 
structures of other fundamental 
cell-signaling circuits and the 
multicellular behaviors that they 
enable.

FIGURES AND TABLES IN THE FULL ARTICLE

Fig. 1. Synthetic secrete-and-sense 

circuit motif in yeast.

Fig. 2. Varying receptor abundance 

and secretion rate to tune degrees 

of self-communication and neighbor 

communication.

Fig. 3. Effects of self-communication 

and neighbor communication on positive 

feedback linking secretion with sensing.

Fig. 4. Effects of self-communication 

and neighbor communication on positive 

feedback with signal degradation.

Fig. 5. A simple mathematical model 

provides intuition.

Table 1. Design table for engineering 

secrete-and-sense cells with desired bio-

logical functions motivated by our synthetic 

secrete-and-sense circuit.

SUPPLEMENTARY MATERIALS

Materials and Methods
Supplementary Text
Figs. S1 to S23
Tables S1 and S2
References

From circuits to multicellular behaviors: a bottom-
up synthesis of hierarchy. The secrete-and-sense 
circuit controls how each cell (yellow circle) communi-
cates through a signaling molecule (orange circle), 
which in turn controls the cell-to-cell communication. 
The collection of cell-to-cell communication in all pairs 
of cells yields population-level behaviors such as an iso-
genic population of secrete-and-sense cells bifurcating 
into two functionally distinct subpopulations (yellow 
and green circles).

READ THE FULL ARTICLE ONLINE

http://dx.doi.org/10.1126/science.1242782

Cite this article as H. Youk, W. A. Lim, 
Science 343, 1242782 (2014). 
DOI: 10.1126/science.1242782

Secrete-and-sense 

     circuit motif

Secrete-and-sense 
             cell

    Cell-to-cell 

communication

     Population 

       behavior

The list of author affi liations is available in the full article online.
*Corresponding author. E-mail: lim@cmp.ucsf.edu

RESEARCH ARTICLE SUMMARY

7 FEBRUARY 2014    VOL 343    SCIENCE    www.sciencemag.org 628

Published by AAAS



Secreting and Sensing the Same
Molecule Allows Cells to Achieve
Versatile Social Behaviors
Hyun Youk1,2 and Wendell A. Lim1,2,3*

Cells that secrete and sense the same signaling molecule are ubiquitous. To uncover the
functional capabilities of the core “secrete-and-sense” circuit motif shared by these cells, we
engineered yeast to secrete and sense the mating pheromone. Perturbing each circuit element
revealed parameters that control the degree to which the cell communicated with itself versus
with its neighbors. This tunable interplay of self-communication and neighbor communication
enables cells to span a diverse repertoire of cellular behaviors. These include a cell being asocial
by responding only to itself and social through quorum sensing, and an isogenic population of cells
splitting into social and asocial subpopulations. A mathematical model explained these behaviors.
The versatility of the secrete-and-sense circuit motif may explain its recurrence across species.

Acentral goal of systems biology is to un-
derstand how various cells use the com-
mon small repertoire of circuit elements

to communicate with each other to achieve di-
verse functions (1–19). Of particular interest is
the class of circuits that are found in cells that
simultaneously secrete and sense the same extra-
cellular molecule (Fig. 1A) because it is ubiqui-
tous across species. Examples of such cells include
(Fig. 1B) bacteria that secrete and sense the
autoinducers for quorum sensing (20–37), human
pancreatic b cells that secrete and sense insulin
(38, 39), vulva precursor cells in Caenorhabditis
elegans that secrete and sense the diffusible Delta
(40–44), and human Tcells that secrete and sense
the cytokine interleukin-2 (IL-2) to regulate their
growth (45–49). In some cases, a cell that se-
cretes and senses the same molecule communi-
cates with itself (“self-communication”) but not
with its neighboring cells, whereas in other cases
such a cell communicates with its neighboring
cells (“neighbor communication”) but not with
itself. Moreover, in some cases, the secrete-and-
sense cell communicates both with itself andwith
its neighbors (Fig. 1C). The advantages of using
secrete-and-sense circuits have been unclear in
many situations. For example, if a cell’s primary
purpose is self-communication, then it is unclear
why the cell secretes a molecule instead of rely-
ing entirely on intracellular signaling. To address
these questions, we experimentally explored the
full functional capabilities of the secrete-and-sense
circuits that arise from the interaction between
self-communication and neighbor communica-
tion. We sought common design principles that

tie together the seemingly disparate examples of
secrete-and-sense circuits. We used the budding
yeast’s mating pathway as a model system in
whichwe could systematically modify the secrete-
and-sense circuits to determine what features af-
fect the degree of self-communication versus
neighbor communication. We demonstrate that
varying the key parameters of the secrete-and-sense
circuits allows cells to achieve diverse classes of
behaviors, thus suggesting that secrete-and-sense
circuits’ functional flexibility may explain its re-
currence throughout nature.

Results

Basic Secrete-and-Sense Circuit in Yeast
Our model “secrete-and-sense system” is the hap-
loid budding yeast that has been engineered to
secrete and sense the mating pheromone a-factor
(50–60) (Fig. 1D). The cell senses the a-factor
through its membrane receptor Ste2 and responds
by expressing the green fluorescent protein (GFP)
through the a-factor–responsive promoter pFUS1
(Fig. 1D and fig. S1) (51). The cell increases GFP
expression as the concentration of the exogenous
a-factor increases. We used a far1D strain that
did not arrest its cell cycle ormate upon stimulation
by a-factor.

Disentangling Effects of Self-Communication
and Neighbor Communication
To establish whether the cell’s response to sensing
themolecule that it secreted (self-communication)
could be distinguished from its response to the
same molecule that had been secreted by its
neighboring cells (neighbor communication), we
designed an experiment in which we cultured our
secrete-and-sense strain with another strain, called
the “sense-only” strain, which senses but does not
secrete a-factor (Fig. 2A). The sense-only strain
could only respond to the a-factor secreted by
the secrete-and-sense strain. On the other hand,

a secrete-and-sense cell could potentially re-
spond to both the a-factor that it secreted (self-
communication) and the a-factor secreted by the
other secrete-and-sense cells in the same batch
liquid culture environment (neighbor communi-
cation). Thus, we reasoned that if we detected
any difference between the reporter GFP level
of the secrete-and-sense strain (referred as cell A
throughout Fig. 2) and that of the sense-only strain
(referred as cell B throughout Fig. 2), then we
could ascribe such effects to self-communication.

Construction of Library of
Secrete-and-Sense Strains
We constructed a set of secrete-and-sense strains
(Fig. 2B) and a set of sense-only strains (strain
list in table S1). In each secrete-and-sense strain,
doxycycline-inducible promoter pTET07 expressed
the MFa1 gene that encodes a-factor (MATa;
bar1D far1D) (Fig. 2B and fig. S2). Doxycycline,
a small molecule that readily diffused into the cell
to control gene expression through the promoter
pTET07, was used to tune the secretion rate of the
a-factor. Increasing concentration of doxycycline
caused an increasing expression of the genes un-
der the control of pTET07. The GFP expression
was controlled by the promoter pFUS1 that is
induced by the a-factor (fig. S1) (51). We con-
structed various secrete-and-sense strains by vary-
ing the promoter that expressed Ste2. For each
secrete-and-sense strain, we constructed an anal-
ogous sense-only strain that lacked the MFa1
gene. Each sense-only strain also constitutively
expressed the fluorescent protein mCherry, which
the secrete-and-sense strains lacked. This allowed
us to use a flow cytometer to distinguish the sense-
only strains from the secrete-and-sense strains
when they were cultured together.

Experimental Demonstration
of Self-Communication
We cultured our basic secrete-and-sense strain with
its partner basic sense-only strain. Both of these
“basic” strains had the same endogenous promoter
pSTE2 controlling expression of the Ste2 recep-
tor (fig. S3). We grew these strains together at
equal initial cell densities in 5 ml of liquid me-
dium in which we maintained a constant concen-
tration of doxycycline. We used a flow cytometer
to measure each strain’s mean single-cell GFP
fluorescence during the time course. We cultured
these strains at various total cell densities [optical
densities (ODs)] and doxycycline concentrations
(figs. S4 to S7). When both the initial total cell
density and the doxycycline concentrationwere low
(for example,OD=0.001, [doxycycline] = 6 mg/ml;
Fig. 2C, left panel), the mean GFP fluorescence
of the basic secrete-and-sense strain (cell A in
Fig. 2C, left panel) swiftly increased then pla-
teaued, whereas the mean GFP fluorescence of
the basic sense-only strain (cell B in Fig. 2C, left
panel) stayed at a basal value throughout the time
course. This shows that each basic secrete-and-
sense cell sensed and responded to the a-factor
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that it secreted, whereas the amount of a-factor
shared between cells (including between any two
basic secrete-and-sense cells) was too low to
activate the mating pathway. Thus, each basic
secrete-and-sense cell self-communicated in this
regime of low cell density and secretion rate. In
cultures with the same initial total cell density but
with a higher doxycycline concentration (OD =
0.001, [doxycycline] = 30 mg/ml; Fig. 2C, right
panel), the basic secrete-and-sense strain’s GFP
fluorescence again swiftly increased to a higher
plateau than it did in the culture with the lower
production of a-factor (that is, compare cell A in
both panels of Fig. 2C). GFP fluorescence of the
basic sense-only strain also increased over time,
albeit more slowly than that of the basic secrete-
and-sense strain. Thus, increasing the secretion
rate increased the degree of neighbor commu-
nication (including between different secrete-
and-sense cells). The discrepancy between the
amounts of GFP fluorescence of the two strains
indicates that each basic secrete-and-sense cell, in
addition to communicating with its neighbors,
also self-communicates by sensing and respond-
ing to the higher concentration of its own secreted
a-factor. If therewere no self-communication, both
strains would have the same GFP fluorescence.

We examined cultures of the two basic strains
at a 100-fold higher total cell density (OD = 0.1;
Fig. 2D). In the high cell density coculture with a
low doxycycline concentration ([doxycycline] =
6 mg/ml; Fig. 2D, left panel), the basic sense-only
strain’s GFP fluorescence increased faster and
to higher values than it did in the coculture with
the same doxycycline concentration but with the
lower cell density (that is, compared to cell B in
Fig. 2C, left panel). Thus, the greater cell density
caused the degree of neighbor communication
to increase. The change in cell density did not
affect the basic secrete-and-sense strain’s self-
communication because the cell density does not
affect its secretion rate of a-factor per cell, which
is the main determinant of the degree of self-
communication for the basic secrete-and-sense
strain. In cultures with a high total cell density and
a high secretion rate (OD = 0.1, [doxycycline] =
30 mg/ml; Fig. 2D, right panel), there was virtually
no difference in GFP fluorescence between the
two strains. Hence, in these cultures, neighbor
communication was dominant.

Together, our coculture experiments (Fig. 2,
C andD) emphasize that self-communication and
neighbor communication, despite both using the
same signaling molecule, do not always lead to
the same behavior over time in a cell that secretes
and senses the same molecule. In general, the
dynamics of the cell’s response to a signal depends
not just on the type of the signaling molecule
being sensed but also on how the concentration
of that molecule changes over time, and distinct
dynamics of the same signaling pathway over
time can lead to distinct cell fates (17). We de-
veloped a mathematical model that showed that
the secrete-and-sense cell’s response to self-
communication and neighbor communication

yields distinct dynamical responses because of the
fact that the two modes of communication involve
different time scales (61). Our model also explains
the main features of our culture experiments and
quantifies the degree of self-communication and
neighbor communication (61).

High Receptor Expression and Secretion
Rate Enhance Self-Communication
We examined how varying the amount of the
a-factor receptor Ste2 affected the degrees of
self-communication and of neighbor communi-
cation. To do so, we repeated above experiments
with strains that varied in the amount of Ste2 ex-
pressed (Fig. 2B, strains in table S1). In each pair,
the secrete-and-sense and the sense-only strains
used the same constitutive promoter to express
Ste2 (figs. S8 and S9). We cultured each pair of
strains as low cell density cultures (OD = 0.001;
Fig. 2E), as high cell density cultures (OD = 0.1;
Fig. 2F), and in a wide range of doxycycline con-
centrations. We used a flow cytometer to measure
the mean single-cell GFP fluorescence of each

strain after culturing each pair of strains for 5 hours
in doxycycline together. By subtracting the mean
single-cell GFP fluorescence of the sense-only
strain (cell B) from that of the secrete-and-sense
strain (cell A), for each of the seven pairs of
strains in 11 different concentrations of doxycycline,
we obtained “heat maps” for low cell density
(OD = 0.001 for both strains; Fig. 2E) and high
cell density (OD = 0.1 for both strains; Fig. 2F)
cultures. The color of each pixel in the heat maps
(of 7 × 11 pixels) represents the difference in the
mean single-cell GFP fluorescence of the two
strains for each culture condition.

The heat map for low cell density (Fig. 2E)
showed combinations of receptor abundance and
secretion rate that enabled the secrete-and-sense
cells to self-communicate, and those that did not
allow for self-communication. Specifically, in the
region of the heat map defined by high secretion
rates ([doxycycline] > 0.6 mg/ml) and high recep-
tor expression values (top right quadrant in Fig.
2E), secrete-and-sense cells had higher GFP fluo-
rescence than their counterpart sense-only cells
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Fig. 1. Synthetic secrete-and-sense circuit motif in yeast. (A) Cells that secrete a
signaling molecule without sensing (top), cells that sense a molecule without secreting
(middle), and cells that secrete and sense the same signaling molecule (bottom). (B) Examples of “secrete-
and-sense” cells in nature: bacteria secrete and sense an autoinducer for sensing a quorum, human
pancreatic b cells secrete and sense insulin, human T cells secrete and sense the cytokine IL-2 to control
their proliferation, and the vulva precursor cells in C. elegans secrete and sense the diffusible Delta for
specifying their cell fates. (C) Schematic of self-communication and neighbor communication between
two identical secrete-and-sense cells. (D) Schematic of synthetic secrete-and-sense system: haploid bud-
ding yeast (yellow box) engineered to secrete and sense a-factor (orange circle). GFP fluorescence is a
readout of the concentration of a-factor sensed by the cell.
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whose GFP fluorescence remained near basal
values (61). This indicates that a secrete-and-
sense cell with a high secretion rate and a high
receptor expression is an “asocial” cell that self-
communicates by efficiently capturing its own
a-factor because of its highly abundant receptors.
The secrete-and-sense cells with high secretion
rates ([doxycycline] > 0.6 mg/ml) and lower range
of receptor expression values (lower right quad-
rant of the heat map in Fig. 2E) had nearly the
same GFP fluorescence values as their counter-
part sense-only cells. This indicates that a secrete-
and-sense cell with a low receptor expression and
high secretion rate is a “social” cell that is unable
to self-communicate because its receptor abun-

dance is too low to capture its own a-factor for
activating its mating pathway, but is ideal for com-
municating with its neighbors because of its high
secretion rate (61). The secrete-and-sense cellswith
low secretion rate ([doxycycline] < 0.6 mg/ml; the
left half of heat map in Fig. 2E), including those
with high receptor abundances, had nearly the
same GFP fluorescence as their counterpart sense-
only cells. This indicates that these secrete-and-
sense cells cannot self-communicate because they
do not secrete enough a-factor, leading to neg-
ligible self-communication and neighbor com-
munication in low cell density. The heat map for
high cell density (Fig. 2F) showed that secrete-and-
sense cells and sense-only cells had nearly iden-

tical GFP fluorescence at all secretion rate and
receptor expression values once they had grown
together for a sufficiently long time. This indi-
cates that increasing the density of secrete-and-
sense cells increases the neighbor communication
because of the increased total population-level
secretion of a-factor.

Positive Feedback on Self-Communication
and Neighbor Communication Enables
Binary Cell Fates
We next examined how the secrete-and-sense
cell’s degree of sociability could be furthermodu-
lated by two regulatory mechanisms that are ubiq-
uitous innaturallyoccurring secrete-and-sense circuits:
positive feedback link (detection of themolecule leads
to increased secretion of the molecule) (62–64)
and active degradation of the signalingmolecule
(for example, secretion of a protease) (20).

We first investigated the influence of self-
communication and neighbor communication on
the positive feedback link. To the basic secrete-
and-sense circuit (used in Fig. 2, B and C), we
added a positive feedback link (highlighted in
blue, Fig. 3A) in which production of a-factor
was induced by the mating pathway by linking
the rtTA expression by the promoter pFUS1 and
having the promoter pTET07 expressing MFa1.
We engineered this synthetic positive feedback
link so that its strength could be tuned by in-
creasing the doxycycline concentration (fig. S10).
We cultured this positive feedback–equipped
secrete-and-sense strain by itself in a wide range
of doxycycline concentrations and at various cell
densities. For each condition, we used a flow cy-
tometer to obtain the histograms of mean single-
cell GFP fluorescence at various time points (Fig.
3, B and C, and figs. S11 and S12).When the cell
density was low (OD = 0.001) and the positive
feedback was weak (for example, [doxycycline] =
3 mg/ml), this strain’s GFP fluorescence remained
at basal values throughout the time course (Fig.
3B, left column). This corresponds to an “OFF
state” in which the cell secretes the a-factor at a
low basal rate (indicated by its low basal GFP
fluorescence). When positive feedback was strong
in cultures of low cell density (for example,
[doxycycline] = 40 mg/ml; Fig. 3B, right column),
cells, which were initially in the OFF state, in-
creased their signal response over time (corre-
sponding to increasing its signal secretion rate)
and, after 8 hours, reached a maximally allowed
response—the “ON state”—in which cells se-
creted a-factor at the maximal possible rate (Fig.
3B, right column, and fig. S11). Thus, positive
feedback enabled the initially quiescent secrete-
and-sense cell to be “activated” to become max-
imally secreting cells. This behavior occurs inmany
natural secrete-and-sense cells with a similar pos-
itive feedback link (for example, cytokine signal-
ing in T cells) (47, 48, 62, 63, 65–68).

At a high cell density (OD = 0.1), if the pos-
itive feedback was weak (for example, [doxycy-
cline] = 3 mg/ml; Fig. 3C, left column), the cells
activated, whereas they remained in the OFF state
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Fig. 2. Varying receptor abundance and secretion rate to tune degrees of self-communication
and neighbor communication. (A) Secrete-and-sense strain (“cell A”) and sense-only strain (“cell B”)
were cultured together for all experiments in this figure. (B) Each secrete-and-sense strain used a different
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densities of “basic secrete-and-sense strain” and “basic sense-only strain” were cultured together for two
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fluorescence of cell B from that of cell A, averaged from three independent experiments).
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in cultures of lower cell density with the same
doxycycline concentration (Fig. 3B, left column)
(fig. S12). This indicates that increased neighbor
communication, through the population’s collec-
tive amplification of the basal level secretion from
each cell, probably accounts for this activation
(Fig. 3C, left column).

To address whether these activation proper-
ties were primarily due to self-communication or
neighbor communication, we incubated the posi-
tive feedback–equipped basic secrete-and-sense
strain (Fig. 3A) with the analogous sense-only
strain (characterized in fig. S10) under various
doxycycline and cell density conditions (fig. S13).
At low total cell density (OD = 0.001), the sense-
only strain’s GFP fluorescence initially remained
at the basal values at the onset of the activation
of the secrete-and-sense strain at all doxycycline
concentrations. Thus, self-communication, through
a cell’s small rate of basal secretion, primarily ac-
counts for the “self-activation” at this low cell
density (fig. S13). At a high total cell density
(OD = 0.1), the sense-only strain’s GFP signal
increased at the same time and at the same rate
as the secrete-and-sense cells, indicating that neigh-
bor communication primarily caused the activa-
tion (fig. S13). Thus, at sufficiently high density,
secrete-and-sense cells with positive feedback
collectively amplify each cell’s basal secretion of
a-factor, leading to a “neighbor activation.”

To summarize, self-activation can occur with-
out any neighbor communication, whereas
neighbor activation can occur in regimes where
self-communication is insufficient for self-
activation of the secrete-and-sense cells with the
positive feedback link. Neighbor communication
strengthens the positive feedback, enabling even a
very weak positive feedback secrete-and-sense cir-
cuit to behave as if it had a strong positive feedback.
Self-communication, through sufficiently strong
positive feedback, enables the secrete-and-sense
cells with a very low secretion rate to self-activate
so that they can communicate with their neigh-
bors. The interplay between self-communication
and neighbor communication creates the overall
population-level behavior, in which all cells ac-
tivate in near unison (Fig. 3D) (61). Our work
shows that understanding this collective behavior
of the secrete-and-sense circuit with the positive
feedback link requires knowing the properties of
both the intracellular circuit and the communi-
cation between the secrete-and-sense cells.

Signal Degradation with Positive Feedback
Enables Bimodal Cellular Differentiation
We also examined the effects of an active signal
degradation mechanism in secrete-and-sense cir-
cuits.We engineered our positive feedback–equipped
basic secrete-and-sense strain to express the Bar1
protease (50, 52–54), which degrades a-factor in
the periplasmic space of the yeast cell (Fig. 4A).
We constructed a set of such strains, each with a
different constitutive promoter that controls the
Bar1 expression (strength of promoters shown in
figs. S8, S14, and S15).

A strain that had a weak constitutive expres-
sion level of Bar1 (Fig. 4, B and C, fig. S15) was
incubated by itself at low (OD = 0.001) or high
(OD = 0.1) cell density and in various concen-
trations of doxycycline.When its positive feedback
was weak (for example, [doxycycline] = 6 mg/ml),
the strain remained in the OFF state in the low
cell density culture (Fig. 4B, left column) and
was activated at high cell density (Fig. 4C, left
column). Increasing expression of Bar1 decreased
the rate at which activation occurred (fig. S15).
When positive feedback was sufficiently strong
(for example, [doxycycline] = 20 mg/ml), for the
low (Fig. 4B, right column) and high (Fig. 4C,
right column) cell densities, a transient mixture of
OFF-state and ON-state cells was observed in the
isogenic culture. In this bimodal population, con-
sisting of isogenic cells that were all initially in
the OFF state, all the cells in the OFF state were
eventually activated to the ON state (fig. S15). At

high cell density (OD = 0.1), the cells were ac-
tivated faster (Fig. 4C, right column), consistent
with our finding that increasing the degree of neigh-
bor communication increased the rate at which
the secrete-and-sense cells could be activated.

By examining the individual time courses for
all our strains with Bar1 expression (fig. S14 and
S15), we obtained a phase diagram that summa-
rizes how the population-level behaviors depend
on the positive feedback strength and the Bar1
abundance (Fig. 4D). From our mathematical
model (61), we obtained an intuitive explanation
of this phase diagram. When the cells express
very high amounts of Bar1, no activation (self
or neighbor) can occur because the high activity
of Bar1 degrades the basally secreted a-factor
produced by each cell. When the cell density is
low, the secrete-and-sense cells rely on self-
communication for their activation. If in the low
cell density cultures, the secrete-and-sense cells
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cell density (OD = 0.001) and (C) high cell density (OD = 0.1)] and in two representative concentrations of
doxycycline {[doxycycline] = 3 mg/ml (weak positive feedback) and 40 mg/ml (strong positive feedback)}. Blue
histograms, beginning of the time course (0 hour); red histograms, 8 hours into the time course (full data sets
in figs. S11 and S12). Under each panel, the corresponding type of activation behavior is mentioned. a.u.,
arbitrary units. (D) Main population-level behavior: activation of all cells in near unison.
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express a low amount of Bar1 and use a strong
positive feedback link, then they can self-activate
in a digital (ON or OFF) manner, which manifests
as a transient bimodal population of quiescent and
maximally secreting cells (Fig. 4E). This results
from cell-to-cell variability in the threshold for
activation (that is, the amount of a-factor required
for activation). At a sufficiently high cell density,
neighbor activation dominates, and because every
cell essentially senses the same concentrations of

a-factors produced by collective basal secretion,
the bimodal activation can disappear (as cell-to-
cell variability becomes less relevant) and cells
can activate together in a graded fashion (61).
Without the positive feedback, signal degradation’s
role is weakening the secreted signal. However,
when coupled with positive feedback, signal deg-
radation has important effects on the population-
level behaviors of secrete-and-sense circuits that
reach beyond just weakening of the secreted

signal. This may suggest why signal degradation
mechanisms are often present in conjunction
with positive feedback links in naturally occur-
ring secrete-and-sense circuits. Bar1, coupled with
positive feedback, enables a secrete-and-sense cell
to delay its response to signal and a population
to “hedge its bets” by responding in two distinct
ways (that is, bimodal activation, Fig. 4E) by
tuning the threshold for activation. Moreover,
cells can suppress self-activation while only al-
lowing neighbor activation.

Intuitive Phenomenological Model
We developed a simple mathematical model that
ties together various roles of self-communication
and neighbor communication (61). Its central idea
is that self-communication competes with neigh-
bor communication because they both use the
same molecule and receptor. A secrete-and-sense
cell can build a locally high concentration of
a-factor that it secreted. In low cell densities,
this occurs faster than the rate at which the con-
centration far from the secrete-and-sense cell
(the “global concentration”) changes. Sensing of
the locally high a-factor concentration leads to
the fast increases in the secrete-and-sense cell’s
response (self-communication in Fig. 5A and
fig. S16), whereas the slowly changing global con-
centration of thea-factor leads to a slow response in
sense-only cells at low cell density (neighbor com-
munication in Fig. 5A and figs. S17 to S19) (61).
Paradoxically, self-communication in effect insu-
lates a secrete-and-sense cell from responding to the
a-factor that is secreted by the other secrete-and-
sense cells. Our model quantifies and summarizes
the degree of self-communication and neighbor com-
munication in a phase diagram of these key fea-
tures (Fig. 5B) (61). It also aids in understanding
the competition between the positive feedback and
the effects of the active signal degradation (figs.
S20 to S23) (61). Our simple model thus provides
an intuitive explanation of the main principles
underlying the results of our experiments.

Discussion

Translating Knowledge from Synthetic to
Natural Systems
By integrating simple mathematical models, mea-
surements on single cells and whole populations,
and a bottom-up synthetic biology approach, we
revealed a diverse repertoire of biological func-
tions that secrete-and-sense cells can achieve.
Crucially, this integrated approach uncovered
design principles that enable the circuit to tune
the balance between self-communication and
neighbor communication among cells—a crucial
mechanism for achieving myriad cellular behav-
iors and an important general issue in biology.
Our work provides a framework for designing
synthetic secrete-and-sense circuits and better un-
derstanding of the diverse behaviors of seemingly
disparate natural secrete-and-sense cells (Table 1).
For example, bacterial quorum sensing—a pure-
ly social behavior (Fig. 5C)—relies on the low
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secretion rate of an autoinducer and the low ex-
pression level of a low-affinity receptor to pro-
hibit self-communication and allow only neighbor
communication (27, 31, 33, 69). Epithelial cells

predominantly self-communicate through a sig-
naling loop, commonly referred to as “autocrine
signaling loop” (38–49, 70–74), by expressing
large amount of epidermal growth factor (EGF)

receptor and secreting EGF, which the receptor
recognizes, at sufficiently high rates (73)—a pure-
ly asocial behavior (Fig. 5C).

Self-activation (Fig. 5C) occurs in T helper
(TH) cells when they use positive feedback on
the cytokine IL-2 that they secrete and sense to
sharply increase their proliferation rate in a switch-
like fashion. Specifically, TH cells increase both
the expression of high-affinity IL-2 receptor and
secretion rate of IL-2, which enhances their self-
communication through IL-2 that enables them
to turn on their proliferation switch. This promotes
a monoclonal expansion of cells within an ini-
tially polyclonal population of Tcells, even though
all cells in the population have the same un-
derlying network for processing IL-2 signal
(45–48, 62).

Aside fromknown cellular behaviors, ourwork
suggests that simultaneous self-communication
and neighbor communication may be a crucial
mechanism to consider for interpreting behaviors
of secrete-and-sense cells that are currently poor-
ly understood. In particular, there are numerous
examples of poorly understood cytokine-mediated
decisions in immunology and developmental
biology. For example, recent studies have revealed
that naïve TH cells can realize a tunable hybrid of
the two TH cell states, TH1 and TH2, which is
controlled by secreting and sensing cytokines
interferon-g and IL-4 (75, 76). Self-communication
and neighbor communication through these cyto-
kines have both been implicated as the main
factors that determine the distribution of the hy-
brid cell fates in the population, but the details are
unknown. Our work suggests that the simulta-
neous self-communication and neighbor commu-
nication in these T cells may be understood by
measuring the cell density and individual T cell’s
receptor expression and secretion rate through
single-cell measurement techniques. In the cells
of developing embryos, secreting and sensing
hedgehog signaling molecules such as the Sonic
hedgehog (Shh) are crucial for cell fate specifi-
cation, including in the embryos of fruit flies,
mice, and humans (77). Although it is known
that these cells use combinations of autocrine
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Table 1. Design table for engineering secrete-and-sense cells with desired biological functions motivated by our synthetic secrete-and-sense circuit.
Examples of biological functions of secrete-and-sense cells that can be understood and engineered on the basis of the design principles revealed by our synthetic circuit.

Desired biological function Possible circuit parameters for realizing
desired biological function

Mode of communication
used (neighbor/self)

Class of behavior
(Fig. 5C)

Quorum sensing Low receptor abundance Neighbor Purely social
Weak positive feedback

Monoclonal expansion of cells
in a polyclonal culture due to
sensing of self-secreted cytokines

High receptor abundance and high secretion rate Self Purely asocial
Strong positive feedback Self-activation

Timed activation
Creating two functionally distinct cell states Moderate to strong positive feedback Self and neighbor Self-activation

Neighbor activation
Timed activation

Differentiating an isogenic population
into two populations of
functionally distinct cells
that coexist with a defined ratio

Moderate positive feedback with low signal degradation Self and neighbor Bimodal activation
Strong positive feedback with moderate signal degradation Self-activation

Neighbor activation
Timed activation
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and paracrine signaling of hedgehog signaling
molecules for proper cell fate specification, the
difference in the dynamics of individual cells’ re-
sponse to the same signaling molecule determined
by self-communication and neighbor communi-
cation has not received much attention. Insights
provided by recent studies on quantitative single-
cell dynamics in developing embryos indicate
that the different time scales of individual cell’s
response, such as those that would be generated
by self-communication and neighbor communi-
cation through the same molecule, are central for
a reliable and timely developmental patterning
that is reproducible between individuals (78–83).
This is especially true in spatially organized cells—
an important scenario that our work did not
address. Our work suggests that in addition to
identifying the signaling pathways, the approaches
we use to distinguish whether a pathway is self-
or neighbor-activated is crucial to understand the
developmental process of animals.

In engineering secrete-and-sense cells, ourwork
shows that it is possible to design microbes that
can achieve “diffusion sensing” (84), a hypothetical
mechanism for self-communication in bacteria
akin tomammalian autocrine signaling (70), which
was proposed but lacked a clear demonstration.
Our work suggests that by increasing the receptor
expression of bacteria that sense a quorum, they
can be converted to diffuse sense, which may be
useful in bioproduction applications. Such cells
may integrate self-sensing and quorum sensing to
make sophisticated and autonomous decisions
about optimal switching times between growth
and production phases. Indeed, some of the yeast
strains engineered in our study may be useful for
large-scale biofermentation, in which adding ex-
ternal inducermolecules is prohibitively expensive.
Moreover, the ability to tune self-communication
versus neighbor communication in multicellu-
lar microbial systems, such as the social amoe-
bae Dictyostelium discoideum or biofilms, may
provide a way to better understand the advan-
tages of cooperative versus self-driven behaviors
(20–25, 85, 86).

Evolution appears to favor efficient circuits and
signaling elements that can accomplish many dif-
ferent tasks (13, 14). The diverse social behaviors
that are enabled by the functional flexibility of the
secrete-and-sense circuits (Fig. 5C)may explain the
frequent occurrence of this class of circuits in nature.

Dissecting Multicellular Behaviors Through
Bottom-Up Synthetic Biology Approach
Beyond understanding secrete-and-sense circuits,
our approach may be generalized to reveal how
cells use fundamental cell signaling circuits to
achieve complexmulticellular behaviors. Synthetic
cell signaling circuits, including some capable of
quorum sensing, have often been used to dem-
onstrate targeted cellular behaviors and engi-
neering goals (for example, cellular logic gates)
(3, 28, 33, 34, 37, 87–94). Our work highlights
the alternate use of synthetic circuits—for explor-
ing their full capabilities and understanding them

in a framework that unites natural and synthetic
multicellular systems that share the same circuit
motif (95–97). Although only a handful of ca-
nonical signaling pathways and circuit motifs are
repeatedly used across species, how they produce
multicellular behaviors is poorly understood at a
systems level (98). By building synthetic signaling
circuits that mimic the natural signaling circuits,
one can perturb each circuit element in individual
cells, measure its effects on intracellular and in-
tercellular interactions, and then bridge these in-
teractions to the whole population-level behavior.
Doing so may help us understand how the myriad
interactions from molecules to cells are coordi-
nated to yield coherent, higher-order macroscopic
multicellular behaviors (2).

Materials and Methods

Plasmid and Strain Construction
A list of yeast strains used in our study is in table
S1, and a list of single-copy yeast-integrating
plasmids is in table S2. Full details of plasmid
and strain construction are available in the mate-
rials and methods. Here, we summarize the yeast
and plasmid constructs and the basic construction
process. All strains were derived from the haploid
strain W303 (MATa his3 trp1 leu2 ura3). In par-
ticular, the strains CB008 and CB009 (table S1)
(51), which were both derived from W303 and
far1D, were our starting base strains for generat-
ing all other strains. The family tree of our strains
and their genotypes are provided in table S1.
Twomain differences between CB008 and CB009
are that CB008 contains the endogenous BAR1
and lacks pFUS1-GFP, whereas CB009 is bar1D
and has pFUS1-GFP integrated at the mfa2 locus.
We knocked out genes in yeast using the stan-
dard polymerase chain reaction (PCR)–mediated
gene deletion method, in which the undesired
gene in the yeast genome is swapped with a
PCR product that contains the selective marker
gene in its place through a homologous recom-
bination. The selection markers we used were as
follows: HIS3, URA3, TRP1, LEU2, KanMX (re-
sistance to G418, Geneticin, Life Technologies),
HphMX (resistance to hygromycin B, Life Tech-
nologies), and natMX (resistance to nourseothricin,
Sigma-Aldrich). Yeast transformations were per-
formed with the standard polyethylene glycol/
lithium acetate method.

Flow Cytometry
Single-cell fluorescence was measured using a
BectonDickinson LSRII (custom-designed) flow
cytometer with a robotic arm for handling samples
in a 96-well plate. GFP fluorescence was measured
using a coherent sapphire laser with an excitation
wavelength of 488 nm. For both dose response and
time course experiments, unless otherwise stated,
sample aliquots were treated with cycloheximide
(5 mg/ml) (Sigma-Aldrich) before measuring single-
cell fluorescence. In obtaining the single-cell mean
fluorescence values, differences in cell sizes were
accounted for through forward and side scatter

distributions in the flow cytometer, thus ensuring
fair comparisons of fluorescence values.

Culturing Yeast Strains
We cultured all our yeast strains in a standard syn-
thetic medium with 2% glucose at 30°C. For in-
ducing gene expression in yeast with doxycycline
(“doxycycline hyclate, 98%purity,”Sigma-Aldrich),
we aliquoted previously dissolved doxycycline
(in double-distilled water) directly into the growth
medium to a desired final concentration. Unless
otherwise stated, all our yeast strains were cul-
tured in 5 ml of synthetic medium that was con-
stantly mixed by a rotatory wheel at 30°C. For
induction with a-factor (Zymo Research), cells
were culturedwith desired amounts of the a-factor
in 5 ml of synthetic medium.

Main Features of Mathematical Model
Full details of our mathematical model and step-
by-step derivations of all the equations listed be-
low are available in the supplementary text. Here,
we summarize basic mathematical techniques and
physical intuition used in building our model. The
main physics underlying our model is the notion of
“mixing length scale” from fluid mechanics (99).
It characterizes the distance over which a fluid ele-
ment (coherent collection of fluid molecules) can
travel before losing its collective properties and
mixing with the rest of the fluid. A fluid element
smoothly flows in the laminar flow region, but upon
crossing the boundary between laminar and tur-
bulent flow regimes, its collective motion is de-
stroyed as its individual fluid molecules mix with
the surrounding fluid (99). When a mechanical de-
vice is rotating a tube that contains a liquidmedium,
such as in our experiments, the device cannot trans-
mit its energy efficiently down to an arbitrarily
small length scale to break off all fluid elements.
As detailed in our calculations in the supplemen-
tary text, this led to a turbulent flow in the macro-
scopic length scale (on the order of millimeters) but a
laminar flow in the microscopic length scales (below
about 500 mm, depending on the Reynolds number)
in our experimental setup. Hence, a secrete-and-
sense cell could create andmaintain a concentration
gradient of a-factor around itself in our cultures.
As shown in the supplementary text, at OD = 0.1
and a high Reynolds number of 10,000, we com-
puted the Kolmogorov mixing length scale (99) for
our experimental setup to be about 30 mm, which
was about five times larger than the average diam-
eter of haploidyeast cells (61).Amore realistic lower
Reynolds number yielded a larger Kolmogorov
mixing length.Hence, a secrete-and-sense cell could
self-communicate by sensing the concentration
gradient formed by the a-factor that it secreted,
which could be maintained just around the cell
and determined by solving the diffusion equa-
tion. Beyond a distance from the cell that is larger
than the Kolmogorov mixing length, a-factor from
all secrete-and-sense cells became “well mixed”
together because of the turbulent flow regime. For
this regime, we used a “mean field” approximation
to compute thea-factor concentration. As detailed

www.sciencemag.org SCIENCE VOL 343 7 FEBRUARY 2014 1242782-7

RESEARCH ARTICLE



in the supplementary text, solving the diffusion
equation in three dimensions with the appropriate
boundary conditions (constant secretion rate, no
a-factor infinitely far away from the cell) yielded
the concentration c over time t of a-factor at the
surface of the secrete-and-sense cell with radius
R (100) (also eq. S1 in the supplementary text):

cðR,tÞ ¼
ffiffi
t

p
F0ffiffiffiffiffiffi
pD

p 1 − e
−R2
Dt þ R

ffiffiffi
p

p
ffiffiffiffiffi
Dt

p erfc
Rffiffiffiffiffi
Dt

p
� �� �

ð1Þ

whereD is the diffusion coefficient of a-factor in
water [D = 150 mm2/s, estimated by using the
Stokes-Einstein relation and is similar to the val-
ue used by more detailed and insightful models
of the mating pathway (53, 54)] and F0 is the flux
of the a-factor molecules secreted radially out-
ward at the cell surface [molecules/(area × time)].
From Eq. 1, we used the standard first-order or-
dinary differential equation model for constitutive
gene expression to derive the basic secrete-and-
sense cell’s GFP abundance Gself due to pure self-
communication, which was described by Eq. 2
(also eq. S3 in the supplementary text):

Gself ð½a�,tÞ ¼ G0 −
kð½a�Þ
s

� �
e−st þ kð½a�Þ

s
ð2Þ

whereG0 is the basal GFP level, s is the first-order
protein degradation rate ofGFP, and k([a]) is the net
production rate (transcription and translation com-
bined) of GFP as a function of the concentration
of a-factor. Specific values for these parameters
were determined as detailed in the supplementary
text (61). We used a similar approach to model
neighbor communication, resulting in Eq. 3 that
described the basic sense-only cell’s GFP level
Gothers (also see eq. S6 in the supplementary text):

dGothers

dt
¼ kðrðtÞÞ − sGothers ð3Þ

where r(t) is the global concentration of the
a-factor due to the collective secretion of all the
secrete-and-sense cells (details in the supplemen-
tary text). By numerically solving Eq. 3, we ob-
tainedGothers. Equations 2 and 3 together quantified
the degrees of self-communication and neighbor
communication in our secrete-and-sense cells. Full
details of these analyses are available in the sup-
plementary text.
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