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SUMMARY

How a system of genetically identical biological cells organizes into spatially heteroge-

neous tissues is a central question in biology. Even when the molecular and genetic un-

derpinnings of cell-cell interactions are known, how these lead to multicellular patterns

is often poorly understood. Of particular interest are dynamic patterns such as traveling

waves, which confer spatiotemporal control over key developmental processes such as

differentiation, segmentation and cell division. Theoretical approaches based on mathe-

matical descriptions of underlying physical and chemical processes provide a promising

avenue to explore biological pattern formation. In particular, theoretical models con-

nect processes on the molecular scale to biological function on the tissue level and may

provide mechanistic descriptions of how patterns are generated and maintained.

Pattern formation requires coordination of chemical, physical and biological processes

at different length and time scales. Classical models based on reaction-diffusion mecha-

nisms or morphogen gradients typically focus on chemical processes with a single scale

parameter, and have no explicit treatment of cells and gene regulatory networks. To over-

come these limitations, we developed multiscale, agent-based models to study the gene

expression dynamics of cells that secrete and sense signaling molecules. Our models

explicitly incorporate cellular processes by modeling cells as interacting agents whose

response is dictated by realistic descriptions of underlying biochemical and gene regu-

latory processes.

With our theoretical model, we observed a variety of population-level spatial and tem-

poral patterns that formed without external morphogen gradients. A central question

arising from this observation is whether there are “rules” at the microscopic level (e.g.

related to gene regulatory networks and molecular parameters) that govern features of

the macroscopic behavior (i.e. gene expression patterns). We addressed this question

by performing large-scale simulations of our models and developing theoretical frame-

works to characterize and explain these patterns.

We first studied cells that communicate with a single signaling molecule, using concepts

and approaches from dynamical systems theory, cellular automaton theory and infor-

mation theory. We extended previous models by considering “analogue” cells that re-

spond to sensed concentrations in a continuous way, rather than “digital” cells that have

vii
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a binary response (i.e. either turn “ON” or “OFF” a gene). We observed that this system

shows a transition between an “autonomous” and a “synchronized” state and proposed

various quantitative measures to characterize this transition. We also probed the sys-

tem’s sensitivity to initial conditions by defining and quantifying perturbations and re-

sponses. Finally, we proposed a metric for characterizing the cell population’s degree of

autonomy based on the information-theoretic concept of mutual information.

Next, we constructed a macroscopic description for the same model with one signaling

molecule, which describes how population-level features of the system evolve. We did

this by focusing on quantities that characterize population level features without spec-

ifying the state of each cell. These quantities characterize the average gene expression

level and spatial correlations between different cells. We then derived a “pseudo-energy”

based on an analogy with spin models in statistical physics. This is a phenomenological

quantity that monotonically decreases over time, and can be expressed solely in terms

of these macroscopic quantities. This revealed a conceptual picture of our multicellular

system as a particle rolling down a “pseudo-energy” landscape. Based on these facts,

we derived an “equation of motion” that independently describes the evolution of these

macroscopic quantities and largely follows the gradient of the landscape. This “equation

of motion” recapitulates main qualitative findings and gives a visual interpretation for

why the system becomes increasingly spatially ordered over time.

We subsequently extended our theoretical model to cells that communicate with mul-

tiple signaling molecules. With two types of molecules, we observed self-organized dy-

namic patterns such as collective oscillations and traveling waves. As there are multi-

ple ways in which these two molecules can regulate each other at the genetic level, a

primary question is how these different ways of communicating relate to the various

emergent multicellular patterns. To address this question, we first performed a com-

putational search that enumerated all two-gene networks and scanned a large range of

parameters, to find the various conditions under which the different types of patterns

could form. This revealed that the various ways of communicating with two molecules

grouped into three classes, which are characterized by easy-to-state rules regarding their

underlying network topologies. One of these classes is capable of generating dynamic

spatial patterns, such as traveling waves and spiral waves, which can propagate infor-

mation across the system. We then constructed a theoretical framework to study travel-

ing waves. In essence, we derived mathematical conditions for the propagation of these

waves in terms of the system’s microscopic parameters. This theoretical approach recov-

ers the same ways of communicating (i.e. gene networks for two signaling molecules)

that enable traveling waves to form as found in simulations, and correctly retrieves the

corresponding parameter conditions. Furthermore, we found that complex dynamic
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patterns in our model emerge through a three-stage process. Starting from random ini-

tial conditions, the system quickly becomes spatially ordered, after which transient in-

coherent waves traverse the system in a turbulent fashion, until they suddenly settle into

dynamic patterns that repeat themselves over time without changing shape. Finally, we

extended our model to include other realistic features of biological tissues (e.g. stochas-

ticity) and quantitatively characterized their impact on the formation and propagation

of dynamic spatial patterns.

Altogether, our results show that features at the molecular and subcellular scales directly

affect pattern formation in multicellular systems. This suggests that the collective dy-

namics of multicellular systems and tissue-level patterns can be controlled by appro-

priately selecting gene regulatory architectures and tuning molecular parameters. Fur-

thermore, our work has wider implications for understanding and engineering biologi-

cal systems from experimental and theoretical perspectives. Experimentally, our results

provide a blueprint for identifying mechanisms and conditions enabling pattern forma-

tion in multicellular systems (e.g. in development), as well as for engineering patterns

in synthetic biological systems or even non-living chemical systems (e.g. artificial pro-

tocells). Theoretically, the methods we have developed can be extended to study more

specific biological systems. Furthermore, they may offer insights into complex dynamics

in other types of discrete interacting systems, in biology and beyond.



SAMENVATTING

Hoe een systeem van genetisch identieke biologische cellen zich ontwikkelt tot ruimte-

lijk heterogene weefsels is een hoofdvraag in de biologie. Kennis van de onderliggende

moleculaire en genetische interacties binnen en tussen cellen leidt niet direct tot be-

grip van hoe multicellulaire patronen ontstaan. In het bijzonder zijn dynamische pa-

tronen zoals lopende golven belangrijk, omdat deze ruimtelijke controle over belang-

rijke ontwikkelingsprocessen verschaffen, zoals differentiatie, segmentatie en celdeling.

Theoretische benaderingen gebaseerd op wiskundige beschrijvingen van onderliggende

fysische en chemische processen vormen een veelbelovende methode om biologische

patroonvorming te verkennen. In het bijzonder verbinden theoretische modellen pro-

cessen op moleculaire schaal met biologische functie op weefselniveau en kunnen ze

mechanistische beschrijvingen geven van hoe patronen vormen en in stand worden ge-

houden.

Patroonvorming vereist coördinatie van chemische, fysische en biologische processen

op verschillende lengte- en tijdsschalen. Klassieke modellen gebaseerd op reactie-diffusie

mechanismen of morfogengradiënten richten zich meestal op chemische processen met

een enkele schaalparameter en hebben geen expliciete beschrijving van cellen en gene-

tische netwerken. Om deze tekortkomingen tegemoet te komen hebben we multischaal,

agent-gebaseerde modellen ontwikkeld om de genexpressiedynamica te bestuderen van

cellen die signaalmoleculen vrijlaten en waarnemen. Door cellen te modelleren als in-

teracterende individuen, kunnen we cellulaire processen expliciet beschrijven. Verder

modelleren we de respons van de cellen door middel van realistische beschrijvingen van

de onderliggende genregulatie en andere biochemische processen.

Met ons theoretisch model hebben we verschillende patronen op weefselniveau waarge-

nomen, die zonder externe morfogenen tot stand zijn gekomen. Deze omvatten zowel

ruimtelijke patronen als patronen die in de tijd regulier gedrag vertonen. Deze observa-

tie leidt tot de vraag of er op microscopisch niveau “regels” zijn (bijv. eigenschappen van

genetische netwerken en moleculaire parameters) die kenmerken van het macroscopi-

sche gedrag reguleren (d.w.z. genexpressiepatronen). Om deze vraag te beantwoorden

hebben we grootschalige simulaties van onze modellen uitgevoerd en theoretische ka-

ders ontwikkeld om de patronen te karakteriseren en te verklaren.

x
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We hebben eerst cellen bestudeerd die communiceren met een enkel signaalmolecuul.

Hiervoor hebben we concepten en methodes gebruikt uit dynamische systeemtheorie,

cellulaire automatentheorie en uit de informatietheorie. We hebben eerder ontwikkelde

modellen uitgebreid door analoge cellen in plaats van digitale cellen te nemen. Dat wil

zeggen dat we cellen modelleren die als respons op waargenomen concentraties hun ge-

nexpressie niet op binaire wijze reguleren (door een gen “aan” of “uit” te zetten), maar

op continue wijze. Dit systeem vertoont een overgang tussen een “autonome” en een

“gesynchroniseerde” fase, die we kunnen karakteriseren door middel van verschillende

grootheden die we hebben geïntroduceerd. We hebben ook de invloed van beginwaar-

den onderzocht door perturbaties en responsen te definiëren en te kwantificeren. Tot

slot hebben we een grootheid geïntroduceerd om de mate van autonomie van de cel-

populatie te meten die gebaseerd is op een concept uit de informatietheorie genaamd

transinformatie.

Vervolgens hebben we een macroscopische beschrijving voor hetzelfde model met één

signaalmolecuul geconstrueerd, die beschrijft hoe eigenschappen op populatieniveau

zich ontwikkelen in de tijd. Hiervoor hebben we grootheden gebruikt die het systeem

op populatieniveau karakteriseren zonder de toestand van elke cel te specificeren. Voor-

beelden zijn het gemiddelde genexpressieniveau van de populatie en de ruimtelijke cor-

relaties tussen verschillende cellen. We hebben daarna een “pseudo-energie” afgeleid

op basis van een analogie met spinsystemen uit de statistische fysica. Dit is een feno-

menologische grootheid die monotoon afneemt en direct uit te drukken is in deze ma-

croscopische grootheden. Hieruit ontstond een conceptueel beeld van ons meercellige

systeem als een deeltje dat op een landschap van deze “pseudo-energie” naar beneden

rolt. Op basis van deze bevindingen hebben we een “bewegingsvergelijking” afgeleid

voor deze macroscopische grootheden, die grotendeels de gradiënt van het landschap

volgt. Deze “bewegingsvergelijking” vat de belangrijkste kwalitatieve bevindingen van

het model samen en geeft een visuele interpretatie van het toenemen van ruimtelijke

orde in het systeem.

Daarna hebben we ons theoretisch model uitgebreid door cellen te bestuderen die com-

municeren met meerdere signaalmoleculen. Met twee soorten moleculen hebben we

zelfgeorganiseerde dynamische patronen geobserveerd, zoals collectieve oscillaties en

lopende golven. Aangezien er meerdere manieren zijn waarop deze twee moleculen el-

kaar op genetische niveau kunnen reguleren, is een primaire vraag hoe deze verschil-

lende manieren van communiceren zich verhouden tot de verschillende emergente meer-

cellige patronen. Om deze vraag te beantwoorden, hebben we eerst een computeralgo-

ritme geïmplementeerd, die voor elk van de netwerken met twee signaalmoleculen een

groot aantal parameters doorzoekt, om condities te vinden waaronder de verschillende
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soorten patronen kunnen vormen. Hieruit bleek dat de verschillende wijzen waarop

cellen met twee signaalmoleculen kunnen communiceren groeperen in drie klassen, die

worden gekenmerkt door simpele regels met betrekking tot hun netwerktopologieën.

Eén van deze klassen is in staat om dynamische ruimtelijke patronen te genereren, zo-

als lopende golven en spiraalvormige golven, waarmee cellen op grote schaal informatie

met elkaar kunnen uitwisselen. Daarom hebben we een theoretisch kader geconstrueerd

om lopende golven te bestuderen. In essentie hebben we wiskundige vergelijking afge-

leid voor de propagatie van deze golven, die we kunnen uitdrukken in termen van de mi-

croscopische parameters van het systeem. Met deze theoretische benadering hebben we

dezelfde communicatievormen gevonden die in staat zijn om lopende golven te vormen

(d.w.z. gennetwerken met twee moleculen) als in onze simulaties, met vrijwel identieke

condities op de parameters. Verder hebben we geconstateerd dat complexe dynamische

patronen in ons model ontstaan in drie fasen. Met willekeurige begintoestanden wordt

het systeem snel ruimtelijk geordend, waarna incoherente lopende golven het systeem

op turbulente wijze doorkruisen, totdat deze plotseling coherent worden en dynamische

patronen vormen die zich herhalen in de tijd zonder van gedaante te veranderen. Ten-

slotte hebben we ons model uitgebreid door andere realistische kenmerken van biologi-

sche weefsels (bijv. stochasticiteit) mee te nemen en de invloed hiervan op de vorming

en instandhouding van dynamische ruimtelijke patronen kwantitatief te karakteriseren.

Al met al laten onze resultaten zien dat moleculaire en subcellulaire eigenschappen van

cellen directe invloed hebben op patroonvorming in meercellige weefsels. Dit suggereert

dat de collectieve dynamica van multicellulaire systemen en patronen op weefselschaal

kan worden afgestemd door specifieke netwerkarchitecturen en moleculaire parameters

te kiezen. Verder heeft ons werk bredere implicaties voor het begrijpen en nabouwen

van biologische systemen vanuit zowel experimenteel als theoretisch perspectief. Expe-

rimenteel bieden onze resultaten een blauwdruk voor het identificeren van mechanis-

men en omstandigheden die patroonvorming mogelijk maken in meercellige systemen

(bijv. in de ontwikkelingsbiologie), evenals voor het bouwen van synthetisch biologi-

sche of zelfs niet-levende chemische systemen (bijv. kunstmatige protocellen). Theore-

tisch kunnen de methodes die we hebben ontwikkeld worden uitgebreid en toegepast

om meer specifieke biologische systemen te bestuderen. Bovendien kunnen ze inzich-

ten bieden in complexe dynamica van andere discrete interacterende systemen, zowel

in de biologie als daarbuiten.
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1
PREFACE

1.1. SELF-ORGANIZATION IN BIOLOGY
Collective phenomena and self-organization are ubiquitous in biology. At the largest

scale, the flocking of birds and the schooling of fish show how communicating organ-

isms coordinate their behavior (Fig. 1A). At the scale of tissues, cells interact chemically

and mechanically to form patterns, often as a first step in a complex program of devel-

opment that morphs a single fertilized egg cell into a multicellular organism (Fig. 1B).

In the world of microbes, the slime mould Dictyostelium discoideum happily lives as iso-

lated single cells when food is abundant, but the cells aggregate into a colony when food

is scarce (Fig. 1C). Finally, at the intracellular scale, proteins form dynamic patterns such

as oscillations and waves to coordinate processes such as cell division (Fig. 1D).

The focus on this thesis is on self-organization at the scale of multicellular systems such

as tissues. Before delving into the details, let us explicitly discuss two conceptual ideas,

because they form the backbone that holds this thesis together. First, there is the concept

of self-organization. Cells are able to accomplish tasks collectively that they would not

accomplish if they all acted individually. Yet in many multicellular systems, the cells are

genetically identical and there is no natural “leader cell” orchestrating the whole process.

The collective behavior of the cells thus results from the interactions between individual

cells, rather than from manipulation by an external agent. These interactions result in

emergent phenomena such as collective immune response or aggregation of cells. They

cannot be explained by examining the individual cells making up the collective. In Aris-

2



1.2. BIOLOGICAL PATTERN FORMATION: A CONCISE HISTORY

1

3

totle’s words, “the whole is more than the sum of its parts”.

A B

C D

Developmental biology

Slime mould aggregation

Collective motion

Intracellular patterning

Figure 1.1: Biological examples of self-organization. (A) Bird flocking arises without “leader birds” orches-
trating the process — rather, each bird aligns its motion in response to how its neighbors are flying to avoid
collision. Image courtesy of Jan van IJken. (B) The development of an organism from embryo to full adult
requires many processes that are not directed by external factors, but self-organize as a result of underlying ge-
netic processes. (C) Aggregation of slime mold Dictyostelium discoideum is a result of cAMP signaling between
cells. (D) Protein patterns in E. coli form patterns in response to cell geometry. Image courtesy of Cees Dekker
lab.

1.2. BIOLOGICAL PATTERN FORMATION: A CONCISE HISTORY
The work presented in this thesis follows in the footsteps of numerous great minds and

influential ideas, both directly through the concepts and methods they have developed,

as well as indirectly through their research philosophies. Here, we mention three histor-

ically significant scientific developments that have shaped the present work.

As arguably the founding father of modern theoretical biology, D’Arcy Thompson was

one of the pioneers in proposing the idea that physical laws can be used to understand

biological form, thereby dispelling previous ideas about vitalism, which proposes that

living organisms are fundamentally different from inanimate material. Moreover, Thomp-

son proposed that simple mathematical ideas could explain seemingly complicated bio-

logical phenomena. In his seminal book On Growth and From, he proposes mathemati-
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cal laws to explain a variety of natural patterns and forms, including spirals, leaf arrange-

ments (phyllotaxis), cells and tissues [Thompson, 1917]. However, despite the impres-

sive size and popularity of the work, the proposed mathematical laws do not by them-

selves constitute causal explanations for biological form [Briscoe and Kicheva, 2017].

Moreover, the role of genetics and evolution are largely neglected, and even rejected by

Thompson.

More than three decades after Thompson, the mathematician and polymath Alan Tur-

ing — who was well aware of Thompson’s work — proposed a novel theory for patterns

in development based on diffusing chemicals. Whereas Thompson’s theories use geom-

etry and mechanics to explain various patterns in biology, Turing’s work invokes self-

organizing chemical patterns and is more focused on explaining patterns in develop-

mental biology. Specifically, he demonstrates using elegant mathematical derivations

how simple systems of a few chemical species that diffuse and react with each other –

now known as reaction-diffusion systems – can self-organize into regularly spaced pat-

terns such as stripes and spots [Turing, 1952]. He also coined the term “morphogen” for

describing the diffusing chemicals. We will review the recent progress and limitations of

Turing’s framework in more detail in Chapter 2.

A third major influence on this work comes from the study of cellular automata. These

are spatial models with discrete time, space and states that describe how a collection of

“cells” (pixels) change their state over time in response to their local environment (i.e.

the states of the neighbors). The dominant driving force behind using cellular automata

as models for complexity is Stephen Wolfram [Wolfram, 2002]. While cellular automata

are simple models that can be easily simulated on any modern computer, the range of

complex patterns that they can produce with very simple rules is astounding. As such,

they can be regarded as prototype models for studying how complexity arises from sys-

tems with simple underlying rules. One particular class of cellular automata studied by

Wolfram are so-called elementary cellular automata, where cells interact only with their

immediate neighbors. Wolfram categorized all elementary cellular automata in terms of

their dynamic behavior, and showed that a particular limited subset of them form highly

complex, chaotic patterns. In essence, the model we introduce later is also a cellular

automaton, but we couple it to reaction-diffusion equations. Furthermore, in Chapter

5, we also aim to classify all possible models within our framework, where the degree

of freedom we vary is not the local interaction rule for the cellular automaton, but the

underlying genetic network governing the interactions between signaling molecules.

Altogether, the work presented in this thesis follows in the tradition of employing math-

ematical and physical concepts to understanding biological form. Although we rarely

directly invoke or utilize any results from these early works, their lasting influence man-

ifests through the approach we take as well as in the research questions we propose, as
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will be illustrated in the next section.

1.3. SCOPE AND RESEARCH QUESTIONS OF THIS THESIS
The focus of this thesis is on self-organization in populations of cells that communicate

chemically through producing and responding to signaling molecules. As such, we have

taken an approach which mirrors Turing’s approach – by trying to derive general results

from simple, well-established principles of chemical signaling, but at the same time leav-

ing out other interactions (e.g. mechanical forces) for the sake of not making the system

too complicated. However, more than half a century after Turing, we have a far better

understanding of biological pattern formation and need to incorporate this knowledge

into the models we build today. For example, since many processes take place at dif-

ferent time and length scales, this calls for multiscale models that combine elements at

different time and length scales.

The main questions we addressed are essentially the same questions that Turing and

many others raised decades ago, because they are still relevant today. How do patterns

and structure emerge from interactions at the molecular level (e.g. between genes inside

a cell)? How does an initially isotropic biological system break its symmetry? What are

mechanisms of generating heterogeneity in a population of identical cells?

We addressed these questions by constructing and analyzing mathematical models of

communicating cells. Our starting point is a cell-based multiscale model developed ear-

lier in our group [Maire & Youk, 2015a]. In essence, this model describes the collective

dynamics of a group of chemically communicating cells in terms of the time evolution of

their gene expression states. From a theorist’s perspective, this raises a number of ques-

tions which are common to other studies of complex systems. Can we derive a higher-

level description of the system, so that we can forget about individual cells, but still make

accurate predictions? How do we classify the emergent phenomena and summarize the

conditions under which each of them can arise? Are there conserved quantities, or prin-

ciples mirroring free energy minimization in our system?

Given the enormous body of literature on pattern formation, self-organization and com-

plex systems, how can we possibly come up with a unique and novel approach to study-

ing a century-old problem? Let me mention two features which distinguish our ap-

proach and set it apart from the majority of studies in the existing literature. First, we

explore cellular automaton modeling which explicitly incorporates relevant biophysical

phenomena – such as secretion and diffusion of signaling molecules – rather than using

phenomenological rules for describing how the system should evolve. Cellular automata

and other discrete models have been used to model biological pattern formation in a

wide range of systems [Deutsch & Dormann, 2005]. However, the existing studies con-
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centrate mostly on lattice gas automata to simulate diffusion and fluid flow, for which

rigorous mathematical approaches exist. However, analytical approaches for these mod-

els, such as the lattice Boltzmann methods (discussed in [Deutsch & Dormann, 2005]),

cannot be directly extended to models of biological cells. This calls for the development

of new mathematical tools to analyse cellular automaton models of biological pattern

formation.

Secondly, in modeling complex systems one has to make a choice between realism and

tractability of the model. We may be tempted to include as many elements as possible

into a model, to get an accurate representation of the system. However, by doing so,

we often lose the ability to fully comprehend our model because of various reasons: the

number of parameters becomes too large, we can no longer deduce steady states and

other properties without running brute-force simulations, and even if we could “solve”

the entire model, the high dimensionality of the system would still make it hard for us

humans to fully comprehend it. Thus, there is a trade-off between “model realism” –

how closely the model resembles the actual system – and “model tractability” – how well

we can understand the model by analyzing its outcomes. In this work, we have aimed

to strike a balance between the two, by studying a model that is complicated enough to

incorporate realistic biological features, while at the same time simple enough to allow

for the employment of computational tools for analysis.

Our research strategy consists of two parallel paths, which we will traverse simultane-

ously throughout this thesis. On the first track, we extended a previously developed

model [Maire & Youk, 2015a] to include more realistic elements of communicating mul-

ticellular systems. The goal here is not merely to add more detail, but to explore what

new phenomena arise at the population-level (i.e. in terms the patterns that form) as

one adds more complex elements. We also examined whether and how findings of the

original model altered as we included these more complex elements. This allowed us

to assess the relative importance of various features for generating particular types of

behavior. For instance, suppose we observe that a certain gene network is capable of

generating traveling waves. We can then ask which elements of this network are most

essential to performing this function (of generating waves). If we add or remove interac-

tions between genes, will the network still generate waves?

The other path is more theory-focused and deals with the development of theoretical

methods to analyze, interpret and predict simulation results. Once we have defined a

model, we could run many simulations of the model and examine by eye what happens

in the system in each scenario. However, this would only give us qualitative information

such as whether a pattern forms or not, and becomes unfeasible as the system becomes

more complex. Therefore, we ran large sets of simulations with different parameters
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and initial conditions, and devised automated procedures for analyzing the simulation

results and to obtain relevant statistical quantities from these batch simulations. Iden-

tifying relevant statistical features was a major challenge in this approach. Once we de-

veloped an automated analysis workflow, several questions become simple to address.

One key question was how to connect microscopic features of the model (i.e. at the level

of the cells) with macroscopic observations (i.e. at the population level). For instance,

we may observe that a particular spatial pattern only occurs for a particular set of gene

circuits for the signaling molecules. We then sought to explain this observation by de-

riving a mathematical framework that links the microscopic rules of the system to the

large-scale dynamics.

Addressing our research questions required the invention of new tools and concepts

specifically tailored to multicellular systems. It may be tempting to take the reduction-

ist’s approach and arrogantly reduce all of biology to physics, but it is unlikely that this

will give us a better understanding of biological phenomena. As theoretical physicist

Philip Anderson remarked, “At each level of complexity entirely new properties appear,

and the understanding of the new behaviors requires research which I think is as funda-

mental in its nature as any other. [. . . ] Psychology is not applied biology, nor is biology

applied chemistry” [Anderson, 1972].

1.4. STRUCTURE OF THIS THESIS
Chapter 2 is an extended introduction to self-organization and pattern formation in

multicellular systems. First, we discuss different forms of cell-cell communication that

enable cells to confer information to one another. This enables the emergence of collec-

tive phenomena in multicellular systems, and we zoom in on a few examples. Tradition-

ally, pattern formation is explained through a handful of mechanisms and mathematical

models. We discuss the validity and limitations of these models.

Chapters 3-5 cover the bulk of this thesis and present in-depth theoretical analysis of

different variants of a mathematical model for communicating cells. Chapter 3 starts by

introducing this model in its simplest form. We then study a particular realization of this

model, for which we find that the system transitions between a “synchronous phase” and

an “autonomous phase”. We then study the sensitivity to initial conditions of this model

by performing local perturbations and characterizing how they propagate. Finally, we

propose a measure for characterizing the degree of autonomy, based on the mutual in-

formation between input and output states of the system.

In Chapter 4, we introduce a framework for studying the macroscopic dynamics of our

system, by exploiting an analogy of our model with well-known models in statistical

physics. Specifically, we define macrostates for our system and derive a “pseudo-energy”
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landscape that predicts how the macrostates evolve over time. Together, this yields an

equation of motion for the macrostates that recapitulates main features of the macro-

scopic dynamics.

In Chapter 5, we extend our framework to examine cells that communicate through mul-

tiple signaling molecules and show that various novel types of patterns emerge, such

as complex oscillations and traveling waves. We then find the gene circuits, specifying

the interaction between two types of signaling molecules, that enable these patterns to

form. We characterize the self-organization of these patterns as a multi-step process.

We then introduce more complex elements that correspond to various biological fea-

tures not taken into account in our original model.

Finally, in Chapter 6, we summarize our main findings, discuss limitations of our ap-

proach and provide suggestions for future research.



2
EXTENDED INTRODUCTION:

PATTERN FORMATION IN

MULTICELLULAR SYSTEMS

2.1. CELL-CELL COMMUNICATION: AN OVERVIEW
Just like humans have different ways of communicating, cells also have a variety of ways

through which they send and receive signals. Cell signaling often refers to chemical

signaling — the production, secretion and uptake of small molecules that can encode

information relevant to other cells in the system. However, cells also interact through

mechanical signaling, mediated by direct interaction between cells as well as indirectly

through interaction of the cells with the extracellular matrix. In recent years several other

forms of signaling have been discovered, including transport through tunneling nan-

otubes and electrical signaling in biofilms. In the following, I will discuss these types of

cell signaling by focusing on the mechanisms through which they work, and illustrate

their effects through examples. While the rest of the thesis primarily addresses chemical

signaling, the other types of signaling are mentioned for completeness and may provide

a source of inspiration for future modeling attempts.

9
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CHEMICAL SIGNALING

The most frequently encountered and arguably best studied form of cellular communi-

cation is chemical signaling [Alberts et al., 2007]. In essence, chemical signaling revolves

around the production, secretion and uptake of signaling molecules and the resulting

cellular response. While there is considerable variety in the biochemical pathways and

intracellular machinery that enable chemical signaling, the net effect can often be sum-

marized as the upregulation or downregulation of one or more target genes. If this gene

encodes for a signaling factor, then there is feedback between what a cell senses and

what it secretes.

Furthermore, chemical signaling takes place on a range of different time and length

scales. Stimuli can reach the brain in a fraction of a second and induce immediate re-

flexes, whereas differentiation of stem cells into somatic cells — a process that is often

highly dependent on environmental cues — may take days or even weeks. Signaling can

be local, affecting only the directly vicinity of a cell, or it can affect cells far away, for in-

stance in a different part of the body of a multicellular organism.

These differences are described by different modes of cellular communication [Doĝaner

et al., 2016]. At the closest scale, juxtacrine or contact-dependent signaling occurs only

when two cells physically touch each other (Figure 2.1A). A famous example of a contact-

dependent signaling system is the Notch signaling pathway, where two membrane pro-

teins Notch and Delta bind to each other to transmit usually inhibitory signals. Delta

binds to the Notch receptor and induces a series of cleavage steps in which the Notch

protein is broken down and the tail of the protein acts as a repressor for Notch target

genes in the nucleus. The Notch system is known to be involved in a variety of processes,

for instance in cell fate specification in the nervous system, where differentiated nerve

cells inhibit differentiation of nearby cells, thereby inducing them to become epithelial

cells instead [Artavanis-Tsakonas et al., 1999]. Recent work has shown that it could also

be responsible for generating stripe-like patterns that give rise to rows of sensory brittles

in the Drosophila thorax [Corson et al., 2017].

While contact-mediated signaling relies on membrane-bound proteins, most chemical

signaling occurs through the secretion of diffusible signaling factors. If the range of diffu-

sion is small, it is possible that the molecules are picked up by the same cell that secreted

the molecules. This mechanism of self-communication is termed autocrine signaling

(Figure 2.1B). One example of autocrine signaling is found in the regulation of prolifer-

ation of epithelial cells through epidermal growth factors (EGF) [Sporn & Todaro, 1980].

At low secretion rate of EGF, cells stimulate their own proliferation, whereas overproduc-

tion of EGF leads to uncontrollable tumor growth.

In other cases of chemical signaling, signal molecules reach and induce responses in
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other nearby cells — we call this type of communication paracrine signaling (Figure

2.1C). An interesting example of paracrine signaling is found in the regeneration of hair

follicle cells [Chen et al., 2015]. Upon removal of hairs, the hair follicle cells beneath the

skin secrete the small signaling molecule Ccl2. This is sensed by macrophages that move

towards the affected follicles and secrete Tnf-α, which promotes follicle regeneration.

However, due to positive feedback loops, regeneration happens only if sufficiently many

hair follicle cells are affected, i.e. when many hairs are plucked at the same time.

More generally, autocrine and paracrine signaling are typical in quorum sensing systems,

in which cells infer cell densities based on the concentrations of secreted molecules in

the environment. This may illicit drastic responses as the population density exceed cer-

tain threshold [Youk & Lim, 2014a]. A famous example is the sudden transition to biolu-

minescence in populations of photoluminescent bacteria, where the bacteria suddenly

start producing light-emitting luciferase proteins as their population exceeds a threshold

[Nealson et al., 1970; Papenfort & Bassler, 2016].

Finally, cells can communicate across distances orders of magnitude larger than the

scale of the cells through different mechanisms. Two main examples of such long-distance

signaling are synaptic signaling in the nervous system (Figure 2.1D), where neurons can

pass signals at a speed of 100 m/s, and endocrine signaling (Figure 2.1E), which occurs

through the transport of secreted hormones through the bloodstream and can occur at

a speed of 30 mm/s. It is interesting to note that mechanisms for excitable wave prop-

agation in neurons have similarities to excitation waves in developmental systems of a

much smaller scale. Both systems generate waves propagating at far greater speeds than

is feasible by diffusion only, and it has been suggested that these different systems could

have similar mechanisms for wave generation and propagation [Gelens et al., 2014].

These different modes of signaling are realized by a large variety of different signaling

molecules and signal transduction pathways. This confers diversity and specificity to

multicellular systems — different systems can have unique signaling machineries and

within the same system different ways of signaling can happen simultaneously. Specific

molecules may target only specific cells, instead of inducing responses in all cells. Dif-

ferent sized molecules diffuse at different speeds, and may or may not pass through the

plasma membrane. The smallest molecules that diffuse across the membrane can di-

rectly regulate gene expression by diffusing to the nucleus of the cell. More commonly,

however, signaling molecules are sensed by receptors on the cell membrane, which in-

duce signaling transduction pathways that eventually lead to genetic regulation. These

pathways may amplify, modulate, integrate or spread different signals. They often in-

volve complicated feedback loops where the components downstream of the receptor

regulate each other in various ways [Thurley et al., 2018]. Nevertheless, the net response
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of a cell to a sensed concentration is often similar across different systems — the rela-

tion between sensed concentration and response can often be well-approximated by a

sigmoidal function [Hill, 1910; Ferrell & Ha, 2014a-c]. We will discuss this point in more

detail later, as it forms a key assumption of our model for communicating cells (Chapter

3.1).
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Figure 2.1: Different modes of chemical signaling. Figures based on corresponding cartoons in Alberts et al.,
2007. (A) In juxtacrine signaling, cells in direct contact with each other exchange signals. (B) In autocrine sig-
naling, cells secrete molecules that are sensed by themselves. (C) In paracrine signaling, cells secrete molecules
that are sensed by other cells. (D) Synaptic signaling is mediated by chemicals that diffuse across synapses be-
tween neurons. (E) Endocrine signaling relies on deposition of hormones into the bloodstream and can have
effects at long distances.

MECHANICAL SIGNALING

In recent years, it has been recognized that mechanical interactions play a crucial role in

processes such as collective cell migration and development in general [Mammoto & In-

gber, 2010; Eyckmans et al., 2011; Serra-Picamal et al., 2012]. Different processes at both

the intracellular level as well as the multicellular level require mechanical forces (Figure

2.2A). Cells contract through forces generated by the network of actin and myosin fila-

ments making up the cytoskeleton, which also enables cell motility. In tissues, cells in di-
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rect contact with other cells can communicate by propagating mechanical stress, which

may enable the formation of wavefronts [Idema et al., 2013; Idema & Liu, 2014]. Cells also

interact with the substrate they are on, potentially by deforming it, which in turn indi-

rectly affects other cells in the system (Figure 2.2B). In particular, it has been established

that cells can sense the stiffness of the their substrate and respond to it by changing their

contractility, motility and rate of spreading [Discher et al., 2005]. There are many ways

through which cells can sense forces (mechanosensing) [Vogel & Sheetz, 2006]. Forces

applied to a cell can cause partial protein unfolding, open up ion channels and stabilize

receptor-ligand bonds. Cells can also sense local curvature through the release of pro-

teins and the opening and closing of ion channels. Typically, the sensed signals are then

transduced inside the cell through biochemical reactions (mechanotransduction). This

in turn induces downstream responses ranging from cytoskeletal restructuring and cell

motility at a fast time scale to altered gene expression and deformation of the extracel-

lular matrix at a slower time scale (mechanoresponse).

TUNNELING NANOTUBES ( TNTS)
Contact-mediated signaling can also occur through gap junctions — channels that con-

nect plasma membranes of two cells at close distance to each other — and plasmodes-

mata, analogous channels that connect plant cells [Alberts et al., 2007]. In recent years, a

new type of close-contact signaling has been discovered, which has spurred a wealth of

recent papers and on this topic. Tunneling nanotubes (TNTs) are thin tubes joining the

plasma membranes of two cells located close to each other, and enable direct exchange

of the cytosolic content of the joined cells (Figure 2.2C).

An early example of TNT-like structures was discovered in the Drosophila wing imaginal

disc, where elongated, filapodia-like extensions of the plasma membrane were observed

[Ramirez-Weber, 1999]. These structures — named cytonemes by their discoverers —

allow for direct exchange of signaling factors between the joined cells. The term tunnel-

ing nanotube was coined in a paper on similar tubular structures between neuronal rat

pheochromocytoma cells (PC12) [Rustom et al., 2004]. In particular, it was shown that

these structures allow for direct exchange of organelles and membrane vesicles, thus

effectively coupling the cytoplasms of two distant cells. Later studies have shown that

TNTs can also transfer viruses, proteins and genetic information through e.g. microRNA

and mRNA [Hurtig et al., 2010]. Due to its role in RNA exchange, TNTs have been hy-

pothesized to play a role in RNA inference, a mechanism through which small pieces of

RNA inhibit translation of particular genes [Belting & Wittrup, 2008]. TNTs have been

found to play a key role in stress response and disease. Direct visualization of transport

in TNTs have revealed that heat shock diminishes RNA transfer along TNTs, whereas ox-

idative stress increases it [Haimovich et al., 2017]. In brain tumor cells, TNTs are between
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5 and 100 times more abundant than in healthy cells and increase tumor proliferation by

making the cells resistant to radiotherapy [Oswald et al., 2015]. Prions — misfolded pro-

teins that are involved in several neurodegenerative diseases — are able to hijack the

TNT system to spread across the body, from contaminated food sources to the brain

[Gousset et al., 2009]. HIV and other viruses are also known to be capable of spreading

through TNTs. These discoveries may have potential applications in the development of

new therapeutics targeting these diseases.

In recent years, nanotubes have also been discovered in bacteria, where they seem to

play a similar role in exchanging cytoplasmic contents [Baiyda et al., 2018]. They were

first discovered in electron microscopy studies of the bacterium Bacillus subtilis [Dubey

et al., 2011]. Cytosolic GFP molecules produced by engineered strains were observed to

spread to wild-type bacteria lacking a gene for its production. In the same model organ-

ism, they can allow the spread of antibiotic resistance genes to strains that do not have

one. Bacterial nanotubes can also form between bacteria of different species. In one ex-

ample, B. subtilis produces a molecule called WapA which is toxic to the related species

B. megaterium. By spreading this toxin through nanotubes, B. subtilis could inhibit the

growth of B. megaterium for its own benefit [Stempler et al., 2017]. Thus, bacterial nan-

otube communication can result in both cooperation and antagonism, depending on

the nature of the interaction.

ELECTROCHEMICAL SIGNALING IN BIOFILMS

Another fascinating example of collective behavior resulting from an unconventional

signaling mechanism is found in biofilms of the bacterium Bacillus subtilis. In a biofilm,

only cells at the periphery have access to nutrients and proliferate quickly, whereas in-

ternal cells are the danger of starvation, but have the benefit of being protected from

external threats. The survival of the biofilm as a whole thus depends on cooperation be-

tween cells in the periphery and at the center. This gives rise to collective oscillations

in the biofilm growth dynamics (Figure 2.2D). Phases of slower growth allow the interior

cells to feed, whereas in the faster growth regime the exterior cells deplete nutrients [Liu

et al., 2015]. This behavior, which bears resemblance to action potentials in neurons, is

mediated by bacterial ion channels [Prindle et al., 2015]. These allow for fast propagation

of potassium waves responsible for the coordination of growth across the biofilm. The-

oretically, these observations have been successfully modeled using delay-differential

equations [Martinez-Corral et al., 2018]. The model reproduces the observed sudden

onset of oscillations as the size of the biofilm grows — arising as a Hopf bifurcation in

the model — as opposed to a gradually increase in oscillation amplitudes. Interestingly,

when two biofilms are brought together to grow next to each other, they coordinate their

growth dynamics over extended distances through the same electrochemical signaling
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mechanism [Liu et al., 2017]. In the presence of high nutrient concentrations, the two

biofilms synchronize their growth by oscillating in phase. However, when nutrient avail-

ability becomes a limiting factor, competition drives the biofilms to oscillating out of

phase, so that each biofilms grows when the other is stationary.
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Figure 2.2: Non-chemical pattern formation. (A-B) Mechanical forces play an important role in tissue devel-
opment [Eyckmans et al., 2011]. (A) Cells packed together in a tissue exert mechanical forces to each other,
which may induce downstream responses at the gene expression level. (B) Mechanical effects are also medi-
ated through the ECM, whereby cells sense substrate stiffness and actively shape the ECM by applying trac-
tion forces. (C) Tunneling nanotubes allow the exchange of proteins, nucleic acids and even whole organelles
[Baiyda et al., 2018]. (D) Electrical signaling between close-by biofilms leads to synchronization of their growth
dynamics [Liu et al., 2017].

2.2. SELF-ORGANIZATION IN MULTICELLULAR SYSTEMS
There are myriad examples of multicellular systems in which interactions between ge-

netically identical cells leads to phenotypic heterogeneity (i.e. differences in gene ex-

pression level), often through the emergence of self-organized patterns and other col-

lective phenomena. Here, we will discuss examples of self-organizing multicellular sys-

tems with an emphasis on two phenomena: aggregation of the slime mold Dictyostelium

discoideum and the formation of somites in the development of bilateral animals. While
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these systems greatly differ in many aspects, the underlying structure and the patterns

they generate have a few interesting similarities. Both systems generate synchronized

oscillations and traveling waves, which have been modeled as excitable systems using

the FitzHugh-Nagumo model [FitzHugh, 1961; Nagumo et al., 1962; Gelens et al., 2014].

SLIME MOLD AGGREGATION

A classic example of multicellular self-organization is found in the slime mold Dictyostelium

discoideum (Figure 1.1C). This amoeba switches between an individual and a multicel-

lular state depending on its environment. When nutrients are plentiful, Dictyostelium

cells maintain individual identities. However, when nutrient becomes limiting, the cells

aggregate and form fruiting bodies that look similar to mushrooms. Aggregation is an

intricate process in which certain cell centers attract other cells toward them and grow

over time. The cells attracted to the centers tend to form spiral wave patterns. This pro-

cess is mediated by the secretion of a small molecule called cyclic adenosine monophos-

phate (cAMP). When the cells are starved, they start producing and sending out cAMP

molecules. The molecules are released in pulses in an oscillatory manner, and through

the extracellular environment the oscillations of different cells become synchronized

over time. This behavior has been reproduced in a number of models, mostly based on

reaction-diffusion processes [Martiel & Goldbeter, 1987; Palsson & Cox, 1996], but also in

individual-based models [Dallon & Othmer, 1997]. In particular, these models and later

experimental work revealed an important role for noise in the system to stochastically

drive cells to start oscillating.

Recent work on Dictyostelium aggregation has revealed a number of interesting results

that were previously unknown. Until recently it was not clear whether the oscillations

can arise on an individual level or are a purely collective phenomenon. Gregor et al.

tested this by subjecting individual cells to varying levels of cAMP, and observed oscilla-

tions at sufficiently high concentrations of cAMP [Gregor et al., 2010]. This proved that

modulating cAMP levels alone is sufficient to induce the oscillations, and that the sys-

tem does not rely on more complicated collective mechanisms. Furthermore, the signal-

ing network of Dictyostelium has been worked out in more and more detail and is now

thought to be largely well-characterized at a molecular level. However, detailed models

including all components of these networks have not yielded better results and in fact

fail to reproduce certain experimental features. In contrast, a recently introduced model

for this process reproduced features in good agreements with experiments [Sgro et al.,

2015; Noorbakhsh et al., 2015]. Cells are modeled as coupled units that show an exci-

tation when the cAMP concentration is above a certain threshold. In their model, each

cell is modeled as an excitable unit similar to a neuron. The cell detects cAMP in terms

of fold-changes, and feeds the signal into an excitable circuit modeled by the FitzHugh-



2.2. SELF-ORGANIZATION IN MULTICELLULAR SYSTEMS

2

17

Nagumo model. Upon spiking, the cell releases a bout of cAMP to its environment which

can be sensed by other cells. This model faithfully reproduces the collective oscillations

and spiral waves, as well as other experimentally observed features such as oscillation

times and responses to single cAMP pulses.

SOMITE FORMATION

Self-organized patterns are abundant and indispensable in embryonic development. A

particularly noteworthy process is body segmentation, which occurs in most animals

including arthropods (which includes the insects) and vertebrates (for instance in the

formation of the spinal cord). The former has been well-studied in Drosophila, where

the key genes and regulatory processes behind segmentation have been characterized.

The latter has seen a recent surge in interest, especially when it comes to somite forma-

tion or somitogenesis. During development in bilateral animals, part of the mesoderm

called the presomitic mesoderm (PSM) gives rise to blocks of connected tissue called

somites, which in vertebrates eventually form the vertebrae, rib cage and other parts of

the back.

The formation of these somites has been studied intensively in the mouse and zebrafish

model organisms (for recent reviews, see [Pourquié, 2011; Oates et al., 2012; Hubaud

& Pourquié, 2014]). The PSM forms an elongated, U-shaped structure in the anterior-

posterior direction, around the neural tube — the precursor of the nervous system. As

the embryo develops, the PSM grows in the posterior direction, while somites form one

by one at the anterior end. Somitogenesis is accompanied by oscillations of genes in-

volved in various signaling pathways, together with an arresting wavefront that travels

from anterior to posterior end. See also Figure 5.5A and the accompanying discussion in

Chapter 5.

Numerous theoretical models have attempted to explain various aspects of somitogen-

esis (for reviews, see [Baker et al., 2008; Tomka et al., 2018]). An early model named the

clock-and-wavefront model attempted to explain this phenomenon as the combined re-

sult of a synchronous oscillator and a wavefront [Cooke & Zeeman, 1976]. In this model,

a “segmentation clock” generates synchronized oscillations among all cells of the PSM.

An arresting wavefront then sweeps across the PSM and halts the oscillations. A specific

phase (e.g. the peak of the oscillation) could then be responsible for setting the bound-

aries of the somites.

A number of recent observations have refined this “clock-and-wavefront” picture. First,

experiments show a traveling wave of gene expression moving in the opposite direction

of the arresting wavefront, which slows down as it approaches the wavefront and comes

to a complete halt before reaching it. This wave is distinct from the arresting wavefront

in the clock-and-wavefront model. It is not due to cell motion or other active processes,
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but arises due to spatially-varying oscillation frequencies leading to phase differences

between cells at different locations in the PSM. Furthermore, the collective oscillations

arise through a self-organizing process, as was demonstrated in ex vivo experiments in

which the dissected tail of the PSM, mixed with other cells, was observed to form oscil-

lations and waves again [Tsiairis & Auhlehla, 2016; Hubaud et al., 2017].

How do the oscillations arise in the first place, even at the level of individual cells? It

turns out that a delayed negative feedback loop is at work here [Tyson & Novak, 2010;

Geva-Zatorsky et al., 2006]. In zebrafish, the negative feedback loop is implemented by

the Her/Hes system. The Her/Hes protein can dimerize and repress its own production,

thereby generating sustained oscillations. In mice, negative feedback loops have been

identified in three key signaling pathways: FGF, Wnt/β-catenin and Notch. Interestingly,

oscillations in these pathways are all linked together, for instance through a shared regu-

latory element [Hubaud & Pourquié, 2014] or possibly a different mechanism [Sonnen et

al., 2017]. Sonnen et al. showed that applying periodic pulses of regulatory molecules of

the Wnt pathway also induced oscillations in the Notch pathway, and vice versa. More-

over, oscillations of either pathway become synchronized over time, indicating at some

entrainment mechanism which is yet unknown.

How do the oscillations in the PSM synchronize? It has been recognized that Notch sig-

naling plays a key role in maintaining oscillation synchrony. However, it is now thought

that the synchrony in somite oscillations is initiated independent of the Notch system,

and that Notch signaling is merely responsible for maintaining the synchronized oscil-

lations [Riedel-Kruse et al., 2007]. Moreover, Hubaud et al. recently proposed that the

segmentation clock is an excitable system [Hubaud et al., 2017]. They showed that dis-

sociated and reaggregated cells could re-initiate collective oscillations after oscillation

arrest. By triggering the onset of oscillations through removal of a Notch inhibitor, they

showed that the oscillations resembled those found in excitable systems, showing fea-

tures like a switch-like activation response and a refractory period before reactivation is

possible. What makes the PSM oscillations stop and what is responsible for the travel-

ing wave of gene expression is not yet entirely clear, although different suggestions have

been put forward. It is thought that gradients of Wnt, FGF and retinoic acid play a role in

arresting the oscillations at the anterior end, in addition to generating an oscillation fre-

quency profile responsible for the traveling waves. However, how these spatial gradients

precisely interact with each other and with genetic components of the system is not yet

fully understood [Hubaud & Pourquié, 2014].

OTHER PATTERNS IN DEVELOPMENT

In recent years, quantitative approaches have become more prevalent in developmen-

tal biology (reviewed in [Oates et al., 2010; Reeves et al, 2006; Tomlin & Axelrod, 2006;
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Krupinski et al., 2012]). Recent studies have shown how a combination of experimental

and theoretical work can lead to successful descriptions of developmental patterning.

Here we mention a few examples. The formation of the eye disc in Drosophila is ac-

companied by a wavefront — termed the morphogenetic furrow — that sweeps across

the system. The locations of the photoreceptor cells are set by the wave to form a reg-

ularly shaped crystal lattice. Many of the signals involved in the generation and prop-

agation of the morphogenetic furrow and their mutual interactions have been found,

leading to the development of theoretical models that capture this essence of this dy-

namics [Lubensky et al., 2011, Fried et al, 2016]. Similarly, traveling waves are found in

the brain development of Drosophila, where they regulate the differentiation of neural

stem cells into neuroepithelium cells. This behavior has been successfully described in

a theoretical model involving a simple regulatory circuit together with juxtacrine Notch

signaling, also through an excitable mechanism [Jörg et al., 2019]. A neat example of

theoretical modeling to explain pattern formation is found in the example of Drosophila

bristle formation — this has been shown to arise from a local activation, lateral inhi-

bition mechanism involving the Notch signaling pathway [Corson et al., 2017]. Finally,

the early development of Drosophila requires traveling waves mediated by mechanical

interactions — this example is discussed in the following paragraph.

MECHANICALLY-INDUCED PATTERNS

Mechanical interactions can also give rise to dynamic patterns such as mechanical and

chemical waves. The first way in which mechanics contributes to patterning is through

forces between cells or within cells (e.g. through the actomyosin cytoskeleton). For ex-

ample, in an expanding group of epithelium cells, it has been shown that stress between

cells can propagate as a mechanical wave through the tissue [Serra-Picamal et al., 2012].

Furthermore, in the early Drosophila embryo, nuclear divisions take place without cy-

tokinesis. In other words, the embryo develops into a large single cell with many nuclei

before these separate to become a multicellular embryo — the multinucleated cell is

called a syncytial embryo. To coordinate cell divisions across a very large cell, the cell

generates mitotic trigger waves which travel across the syncytial embryo and synchro-

nize rounds of cell division [Chang & Ferrell, 2013]. A theoretical model which treats the

embryo as an excitable medium shows that the waves could emerge from purely me-

chanical interactions [Idema et al, 2013].

The second way in which mechanics enters is through cell sorting mechanisms. When

cells of different types are isolated from an organism and mixed together in vitro, the

initially mixed configuration of cells will tend to unmix into separate layers constituting

cells of the same type. This process, which resembles what happens if one mixes to-

gether immiscible liquids, has been hypothesized to rely on a thermodynamic process
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which minimizes a free energy that depends on the surface and interfacial tensions of

the cells. This idea is called is the “differential adhesion hypothesis” (DAH) (reviewed

in [Steinberg, 2007; Amack & Manning, 2012]). In recent years, adhesion between cells

has been related to cadherin molecules, which allow cells to stick to each other. However,

taking into account only cadherin molecules alone appeared to be insufficient to explain

the total adhesion energy between cells. This has prompted a revised DAH, which pro-

posed that differences between cells at the edge of the tissue with the rest of the tissue, or

“mechanical polarization” as the authors call it, plays an important role in this process

[Amack & Manning, 2012].

This idea of sorting cells based on their adhesive properties has also given rise to engi-

neered multicellular systems with programmable pattern properties [Toda et al., 2018].

Here, the researchers built a modular synthetic system where juxtacrine cell-cell signal-

ing could induce differences in not only gene expression and cell type, but also in the

adhesive properties of the cell. By tuning the synthetic circuit underlying the signal-

ing system, they were capable of generating a diverse range of self-organized patterns

formed by cells sorting themselves in space due to differences in adhesive properties.

SELF-ORGANIZATION IN BACTERIA

Bacteria have long been known respond to externally added chemical cues by generating

intricate patterns [Budrene & Berg, 1991]. For instance, chemotaxis can drive bacteria to

form patterns when nutrients are heterogeneouslu distributed in space. However, bac-

terial systems where collective behavior arises through cell-cell communication have

been studied only relatively recently. Quorum sensing in bacteria was discovered in the

marine bacterium Aliivibrio fischeri. In this system, the bacteria produce luciferase — a

bioluminescent protein — only if their density exceeds a certain threshold. These stud-

ies have led to the identification of genetic networks and molecular details of bacterial

quorum sensing systems [Waters & Bassler, 2005]. This in turn enabled the develop-

ment of synthetic quorum sensing systems, for instance by engineering quorum sensing

machinery into bacterial species that naturally do not have such a system. By manipu-

lating their network architecture, collective behavior such as synchronized oscillations

and traveling waves could be engineered in a strain of E. coli [Danino et al., 2010].

FURTHER READING

A number of recent articles review multicellular pattern formation from different per-

spectives. [Schweisguth & Corson, 2019] discuss pattern formation in various devel-

opmental systems from both a theoretical and an experimental point of view. Pattern

formation in microorganisms such as bacterial and social amoeba has a long history.
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The lengthy review of [Ben-Jacob et al., 2000] covers both experimental observations

and theoretical modeling using mostly reaction-diffusion equations. [Von Bronk et al.,

2018] also review interacting microbial systems, but mainly from an ecological perspec-

tive and in the context of biofilms. [Howard et al., 2011] discuss how active processes

generate patterns through force-generating molecular motors and the coupling between

biochemical and mechanical processes. [Lander, 2011] discusses how systems biology

concepts and engineering approaches can be applied to understand pattern formation

and growth in development. Synthetic approaches to engineer patterns in biological

systems are the topic of several reviews, including [Teague et al., 2016; Scholes & Isalan,

2017; Santos-Moreno & Schaerli, 2018]. In the field of tissue engineering, pattern forma-

tion in stem cells is a hot topic [Heemskerk & Warmflash, 2016], especially in the con-

text of making artificial organ-like structures called organoids [Sasai, 2013; Lancaster &

Knoblich, 2017].

2.3. MODELS AND MECHANISMS OF MULTICELLULAR PATTERN

FORMATION
In this section, we review the main theoretical frameworks that have been proposed

to explain pattern formation in multicellular systems. Two early theories — the Tur-

ing mechanism and positional information — have traditionally been regarded as al-

ternative explanations for pattern formation. However, it has recently been recognized

that they likely both play an important role in pattern formation [Green & Sharpe, 2015].

The theories also share an important role for chemical signals (morphogens), either as

self-organized patterns or through gradients induced by external effects. As discussed

earlier, mechanical interactions between cells and between cells and the extracellular

matrix can also drive self-organized structures to form. Hence, in complex multicellular

systems one should expect different mechanisms to be at work and to interact with each

other [Schweisguth & Corson, 2019]. In development, pattern formation is followed by

morphogenesis — the embryo’s acquisition of a shape. While chemical cues are mainly

responsible for the former, the latter requires carefully orchestrated motile processes —

such as collective cell migration — which rely on mechanical interactions. These obser-

vations have spurred the development of hybrid theoretical models that combine me-

chanical and chemical interactions [Recho et al., 2019].

REACTION-DIFFUSION THEORY

The classical and dominant idea about pattern formation is based on a mathematical

framework developed by Alan Turing, published one year before the discovery of the

DNA double helix [Turing, 1952] (Figure 2.3A). The core argument of Turing’s analysis
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Figure 2.3: Mechanisms of pattern formation. (A) Reaction-diffusion systems consisting of chemicals that
interact and diffuse self-organize into regular patterns through the Turing mechanism. Plots obtained using
code from the GitHub repository TuringPatterns. (B) Morphogen gradients confer positional information to
cells and induce downstream gene expression changes, which may lead to discrete states arising in a cell pop-
ulation (forming the colors of the French flag in the picture) [Wolpert, 1971]. (C-E) Models of mechanochem-
ical pattern formation, whereby mechanical and chemical interactions are linked and together give rise to
patterns. (C) The classical Murray-Oster theory provides a continuum description of cell and ECM densities,
together with various processes coupling and adjusting these quantities [Murray, 2003]. (D) The Cellular Potts
Model describes how cells change their shapes over time by minimizing an energy function [Merks & Glazier,
2005]. (E) Vertex models describe how tissue shapes change by calculating forces at each vertex shared by
multiple cells [Alt et al., 2017].

is based on a clever mathematical analysis of a system of chemicals that diffuse freely

and may react with each other in processes described by reaction rates. Such systems

are generally known as reaction-diffusion systems and are described by coupled partial

differential equations (PDEs) for each of the chemical species under consideration. Un-

https://github.com/pmontalb/TuringPatterns
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der general assumptions, Turing decomposed the spatial information about the concen-

trations of these chemicals into Fourier modes, and showed that some of these modes

could grow whereas others decayed. If at least one mode grows, then the system will

eventually form a spatial pattern at the wavelength of the fastest growing mode — this

phenomenon is referred to as the Turing instability. The resulting patterns can look like

spots or stripes, depending on the details of the system and the initial conditions. The

idea is that the patterns of these chemicals — named morphogens by Turing — could in-

duce changes in gene expression, which in turn could lead to morphogenetic processes

and cell differentiation.

The power and appeal of this framework lies in the fact that the conditions under which

patterns can form can be reduced into a set of simple mathematical statements in terms

of the parameters of the system. Later, Gierer and Meinhardt showed that Turing pat-

terns arise in a simple two-chemical system, where one chemical is a short-range acti-

vator and the other is a long-range repressor [Gierer & Meinhardt, 1972]. In this model,

the condition Turing derived simplifies to the statement that the inhibitor should diffuse

much further than the activator.

Experimental studies have reproduced the patterns predicted by Turing’s framework in

systems such as chemical reactors [Castets et al., 1990], which are easier to control due

to the absence of biological material. Theoretical studies of reaction-diffusion have pro-

duced patterns that are strikingly similar to patterns observed in biological systems such

as on the coats of animals [Murray, 2003]. This is especially striking when studied on spe-

cific geometries that closely mimic the shape of the biological system, such as sea shells

and tails of animals, or on snakes [Murray & Myerscough, 1991]. Nevertheless, the idea

that Turing patterns arise in biology remained purely theoretical for a long time, because

the molecular identities of the diffusing molecules that could create these patterns have

remained elusive for a long time. Furthermore, Turing patterns are typically not robust

with respect to perturbations and changes in parameters, as will be discussed later. This

has led to scepticism about the usefulness of the Turing framework in explaining biolog-

ical patterns, even from the most fervent practitioners of reaction-diffusion modeling

[Maini et al., 2012].

Progress in recent years has led to the identification of a number of potential Turing

systems, where the molecular identities and interactions of a short-range activator and

long-range inhibitor have been discovered (for recent reviews, see [Kondo & Miura, 2010;

Marcon & Sharpe, 2012]). Notable examples include hair follicle positioning [Sick et al.,

2006], digit patterning [Sheth et al., 2012, Raspopovic et al., 2014], stripe formation in

the mammalian palate [Economou et al., 2011] and zebrafish skin patterns [Watanabe

& Kondo, 2015; Mahalwar et al., 2018]. In general, these studies largely rely on per-

forming experimental perturbations, such as deletion or overexpression of certain genes,
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which show that the self-organized patterns respond to these perturbations in a way that

matches simulations of Turing models. However, these studied have also revealed that

most patterning processes are likely more complex than simple activator-inhibitor sys-

tems of two chemicals. For instance, in the case of zebrafish skin patterns, there are at

least three different types of pigment cells. They interact by promoting or repressing the

migration or growth of cells of the same or a different type. Hence these interactions

are also not purely chemical, yet the patterns they generate are well-recapitulated in a

reaction-diffusion model of the system [Wantanabe & Kondo, 2015]. Furthermore, the

patterns may rely on more than two diffusing molecules, as is in the case of digit pattern-

ing, where a three-molecule gene circuit has been discovered [Raspopovic et al., 2014].

However, note that this system still contains a core motif with a short-range activator

and long-range inhibitor. As such, we can view these systems as the first plausible ex-

amples of biological Turing patterns that have some experimental support, even though

their patterning processes are more complex than described in Turing’s original model.

LIMITATIONS OF REACTION-DIFFUSION MODELS

Despite these recent successes in identifying potential biological Turing systems, using

reaction-diffusion theory to explain biological pattern formation has a number of draw-

backs and limitations. First, reaction-diffusion models model pattern formation as a

purely chemical process without any direct reference to relevant biological processes.

While it can be argued that it is implicitly assumed that the molecules are secreted by

cells and the molecular interactions may be coupled to genetic interactions, these fea-

tures are not explicitly modeled and parameters controlling them cannot be adjusted.

This description would be perfectly accurate when signaling molecules can freely diffuse

inside a tissue, and react instantaneously with other molecules both within and outside

of cells. But in biological systems, these molecules encounter cell membranes, bind to

receptors, induce signal transduction pathways and may eventually regulate gene ex-

pression. These essential processes are neglected altogether in the reaction-diffusion

models, which assume that cells passively respond to their chemical environment with-

out taking any active role in shape it (at least, this is not modeled explicitly).

Part of this limitation stems from the fact that reaction-diffusion systems assume a con-

tinuous field of cells rather than discrete cells. This makes it difficult to take into ac-

count processes that play a role inside individual cells. Furthermore, such continuum

descriptions cannot properly take into account cell-to-cell heterogeneity, which plays

a role in any multicellular system, even when the cells are genetically identical [Acker-

mann, 2015]. One alternative is then to construct individual-based models (IBMs; also

called cell-based or agent-based models) where cells are modeled as individual units
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that interact with each other [Deutsch & Dormann, 2005]. A particular type of IBM is a

cellular automaton, which is a discrete model where local interaction rules specify how

cells change over time. Specifically, cellular automata model cells with discrete states

on a discrete space such as a lattice, that evolve according to discrete time steps. Un-

til recently, IBMs for patterning have often assumed highly simplified rules for how the

agent-based evolves, which are typically derived from phenomenological considerations

[Wolfram, 1984]. However, recent work on pattern formation on the lizard skin shows

that combining cellular automata with reaction-diffusion processes can successfully re-

produce observed patterns [Manukyan et al., 2017]. This suggests that extending IBMs

such as cellular automata to include more realistic features of biological systems could

provide rich ground for further investigation.

The second major issue of the Turing framework is that Turing patterns tend to suffer

from a lack of robustness. In this context, it means that only specific, fine-tuned param-

eters lead to pattern formation. Hence, under a mild perturbation that changes some

parameters, it would not be unlikely that the entire pattern dissolves. It has been known

for a long time that typically only a small portion of the parameter space is capable of

generating Turing patterns [Murray, 1982]. Extending reaction-diffusion models to in-

clude effects of growing domains, stochastic effects and time delays does not resolve

this problem [Maini et al., 2012].

These early findings were done for specific, small systems (e.g. activator-inhibitor mod-

els). In contrast, recent high-throughput numerical studies have looked for Turing pat-

terns in larger networks consisting of more interacting molecules [Cotterell & Sharpe,

2010; Marcon et al., 2016; Zheng et al., 2016; Scholes et al., 2019]. These studies con-

structed libraries of all possible networks up to a certain number of diffusing molecules

and quantified each network’s capacity to form patterns. This was done by simulating

each network with a large set of random parameters and initial conditions, and by ob-

taining statistics on these simulations. In particular, one study identified a set of six

distinct mechanisms — distinguished by their core network motifs — that underlie most

of the networks capable of generating Turing patterns [Cotterell & Sharpe, 2010]. It has

also been shown that differential diffusivity — e.g. having a fast diffusing activator and

slowly diffusing inhibitor — is not required, but that Turing patterns can also arise if

both molecules diffuse equally far [Marcon et al., 2016]. Furthermore, certain types of

networks with three interacting signaling molecules have higher robustness than those

with only two [Marcon et al., 2016]. However, the model set up in this study and thus

also its claimed findings were criticized in a later study, which performed a similar net-

work enumeration with a more general model, but did not find any significant increase

in robustness as the number of molecules increased [Scholes et al., 2019]. Altogether,

these results show that even in Turing models, the exact conditions (in terms of gene
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networks) under which patterns form are not fully understood.

POSITIONAL INFORMATION

The other classical theory about pattern formation, proposed by Lewis Wolpert, is cen-

tered around a concept called positional information [Wolpert, 1969]. The main idea is

that morphogens can form gradients, so cells at different locations sense different con-

centrations, which in turn induces differences in gene expression. As such, the mor-

phogen concentration readout of each cell contains information about its position. If

we assume that cells have three gene expression states and that their sensed morphogen

concentration determines which of the three states they acquire, then we would obtain

a French flag pattern (Figure 2.3B).

A classic process in which positional information has been invoked to explain develop-

ment is the segmentation of the Drosophila embryo. Specifically, the segmentation of the

body along the anterior-posterior (AP) axes is orchestrated by a set of patterning genes

whose interactions are well-characterized. The process starts with the establishment of

morphogen gradients through interaction of the embryo with the maternal environment

— an example is the bicoid gradient along the AP axis [Driever & Nüsslein-Volhard, 1989].

The gradients provide positional information by informing each cell of its position along

the AP axis. They induce downstream gap genes, each of which is expressed in largely

non-overlapping regions along the AP axis. Further downstream, the gap genes turn on

genes specifying the exact positioning of the segments.

In recent years, technical advances have made it possible to accurately measure protein

and mRNA concentrations in vivo up to the single-molecule level [Raj et al., 2008]. Re-

cent studies relying on these and other new techniques have studied the diffusion of bi-

coid proteins in vivo [Gregor et al., 2005], the stability of the bicoid gradient [Gregor et al.,

2007a] and the precision of the gradient [Gregor et al., 2007b]. One particular conclusion

from these studies is that the bicoid gradient is surprisingly precise, allowing the cells to

sense concentrations with accuracies close to their physical limits. This allows each row

of cells along the AP axes to assume a separate identity over time. In this context, infor-

mation theory provides an interpretation of this result that has biological significance

[Tkac̆ik & Walczak, 2011]. Using the concept of mutual information, the authors quan-

tified the amount of information that the bicoid concentration provides to one of the

downstream gap genes. This calculation showed that with four gap genes each individu-

ally reading out the gradient, the system could provide sufficient positional information

for each row of cells to ‘know’ their precise location along the AP axis.

While positional information is often displayed as an alternative to the Turing mecha-

nism, it should be recognized that in many biological systems, both mechanisms are at

play [Green & Sharpe, 2015]. For example, in the development of digits such as fingers
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in the mouse, it has been proposed that the digit pattern arises from a reaction-diffusion

process, but that an FGF gradient sets the spatially-varying wavelength of this pattern.

MECHANOCHEMICAL PATTERN FORMATION

In his seminal 1952 paper, Turing recognized the importance of mechanical forces in

shaping the development of an embryo, but omitted a description of the mechanical

interactions because “The interdependence of the chemical and mechanical data adds

enormously to the difficulty” [Turing, 1952]. His remark has not remained unnoticed,

and in the course of the following decades progress has been made in developing theo-

retical models that describe mechanical interactions at different levels of detail [Wycza-

lkowski et al., 2012]. This has been accompanied by tremendous progress in our ex-

perimental capabilities in precisely measuring forces between and inside cells [Serra-

Picamal et al., 2012].

An early attempt to incorporate mechanical forces into a pattern formation theory is the

continuum mechanics approach known as the Murray-Oster theory ([Oster et al., 1983];

reviewed in [Murray, 2003]; also see Figure 2.3C). In their model, the cells and the ex-

tracellular medium (ECM) are modeled as continuous fields subject to various forces

and interactions. Cells migrate on the ECM as a result of various processes, including

convection (passive migration due to deformation of the ECM), random dispersal, hap-

totaxis (moving up adhesiveness gradients) and chemotaxis (moving up chemical gra-

dients). The interaction between cells and the medium is described by a mechanical

equilibrium equation that takes the viscosity and elasticity of the ECM into account, as

well as cell traction forces (applied by the cell to the ECM) and other forces. Finally, the

total ECM material is assumed to be conserved. These elements are brought together in a

set of coupled PDEs, which can then be solved numerically. The Murray-Oster theory as-

sumes that the ECM deformations are small by modeling the ECM as a linear viscoelastic

medium, but this is not necessarily true in general. Later models have gone beyond this

assumption and developed full non-linear theories [Rodriguez et al., 1994]. The Murray-

Oster theory and its extensions have been applied to modeling the formation of periodic

patterns of feather germs, fingerprint formation, the formation of microvilli, gastrulation

(in particular, ventral furrow formation), brain cortical folding and many other phenom-

ena [Murray, 2003; Wyczalkowski et al., 2012].

As a continuum mechanics theory, the Murray-Oster theory also does not take into ac-

count individual cells of the system. The alternative is to develop cell-based models

that do model interactions between individual cells. A particularly powerful cell-based

model is the Cellular Potts Model, originally introduced by Graner and Glazier [Graner

& Glazier, 1992] (Figure 2.3D). This model was inspired by the earlier mentioned dif-
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ferential adhesion hypothesis and reproduces the experimentally observed cell sorting

processes under suitable parameters [Merks & Glazier, 2005]. While many variants of

this model exist, its classical description consists of a lattice where each site has a state

specifying which cell it belongs to. Lattice sites with the same state together constitute

a single cell. At each time step, the shape of one of the cells is changed probabilistically

according to the interaction energies arising from surface and interfacial tensions. These

energies are captured into a single mathematical function, the Hamiltonian of the sys-

tem, which is used to determine probabilistically how the system evolves. Effects such as

haptotaxis, cell differentiation, cell division and apoptosis can also be incorporated into

this framework [Merks & Glazier, 2005]. The Cellular Potts Model has been applied to a

wealth of biological processes, including evolution of morphogenesis [Hogeweg, 2000],

tumor growth and evolution [Szabó & Merks, 2013] and the formation of vascular net-

works [Scianna et al., 2012].

Another class of cell-based models focusing on mechanical interactions are vertex mod-

els (reviewed in [Alt et al., 2017; Fletcher et al., 2014]; Figure 2.3E). In vertex models,

cells are modeled as 2D polygons or 3D polyhedral which are in direct contact with each

other. For instance, in 2D they could form a hexagonal lattice. The forces between the

cells are determined by the changes in volume, surface area, line tension and possibly

external forces. The forces at each vertex are added up to calculate how the shape of the

entire tissue changes over time. Vertex-based models have been used to model epithe-

lial morphogenesis, cell migration, gastrulation, appendage formation and many other

morphogenetic processes.

OTHER MODELS OF PATTERN FORMATION

In another class of models, patterns arise from the dynamic evolution of a system under

a set of simple rules — these are sometimes referred to as “rule-based” patterns [Scholes

& Isalan, 2017]. An early example of this are the L-systems proposed by Lindenmayer (re-

viewed in [Prusinkiewicz & Lindenmayer, 1996]), which produce branching patterns that

strikingly resemble plants such as ferns. More recently, rule-based models have been ap-

plied to explain features in branching processes in development (reviewed in [Hannezo

& Simons, 2018]). In particular, it has been proposed that different branching processes

can be explained by a single unifying framework based on random walk theory [Hannezo

et al., 2017].

In the field of active matter, the interactions between active “particles” gives rise to col-

lective phenomena such as collective motion. A famous example is the Vicsek model,

an individual-based model with simple interaction rules that reproduces patterns of

bird flocking [Vicsek et al., 1995]. The success of this model is partly due to the theo-
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retical success in deriving coarse-grained, continuum model from this IBM, casting it

into a form similar to the Navier-Stokes equations in hydrodynamics [Toner & Tu, 1998].

At a smaller scale, active processes including advection and active transport have been

proposed to play a key role in intracellular pattern formation, for instance in the estab-

lishment of morphogen gradients and reorganization of the cytoskeleton [Howard et al.,

2011].

It should be noted that different processes can lead to the same type of pattern, meaning

that one cannot always infer the underlying process by only examining the final pat-

tern [Hiscock & Megason, 2015]. Activation-inhibition systems producing Turing-like

patterns can arise through chemical interactions, mechanical interactions or through

cell motility. For instance, traction forces applied by cells to the ECM could be respon-

sible for local activation, whereas the elasticity of the ECM corresponds to long-range

inhibition. Alternatively, cell growth in a confined environment produces compressive

forces which can lead to periodic buckling of a tissue sheet. This mechanism is at play

in the formation of gut villi, which form an undulating pattern with regularly spaced in-

tervals [Shyer et al., 2015]. Thus, to distinguish between different types of patterning

mechanisms, one should examine different features of the system, such as response to

perturbations and the dynamics of pattern formation [Hiscock & Megason, 2015].
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3
CELLS COMMUNICATING WITH ONE

SIGNALING MOLECULE GENERATE

DIVERSE COLLECTIVE BEHAVIORS

We present a theoretical framework and mathematical analysis of a model of spatially dis-

tributed secrete-and-sense cells that communicate through the same signaling molecule.

Starting from an earlier defined model (Section 3.1), we first extended the analysis to cells

with continuous response functions (instead of binary cells) and analyzed the model using

tools from dynamical systems theory (Section 3.2). This revealed a cell-density-dependent

transition between an autonomous phase — in which cells act independently from each

other — and a collective phase — in which cells synchronize their gene expression. Then

we study the effect of local perturbations on the system, by quantifying sensitivity to ini-

tial conditions using metrics tailored to the model under study (Section 3.3). Finally, we

end this chapter by proposing the concept of mutual information between initial state and

final state as a metric to quantify the system’s degree of “autonomy”. (Section 3.4).

3.1. MULTI-SCALE MODEL FOR QUORUM SENSING CELLS
In this section, we introduce a theoretical model for communicating cells that forms the

basis of all subsequent work presented in this thesis. This model was first conceived and

studied in [Maire & Youk, 2015a], where the authors showed that concepts such as auton-
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omy and collectiveness can be quantified and tuned by adjusting microscopic features

of the system (i.e. at the level of individual cells). Specifically, they introduced the con-

cept of ‘phenotype diagrams’ that summarize the collective response of the population

as a function of molecular interaction parameters such as the distance between neigh-

boring cells and characteristics of the signaling circuit. They then define an ‘entropy

of population’ that quantifies the number of steady state configurations the system can

have, which relates to its ability to form patterns. While this earlier work provides a con-

sistent theoretical framework, the model makes numerous assumptions that limit the

scope and extent of the model. Our aim throughout this thesis is thus two-fold: first, we

extend the theoretical framework of [Maire & Youk, 2015a] to study more complex inter-

actions and realistic assumptions. Simultaneously, we develop and apply various other

techniques to more fully understand emergent phenomena and ensemble-level proper-

ties that arise from this model. We also ask what new quantities and concepts are useful

for understanding the collective behavior of this complex system.

Consider a system of N identical cells, which are spherical and have a radius Rcell. Let the

cells be arranged on a hexagonal or triangular lattice with distance a0 between nearest

neighbors (Fig. 3.1). The cells secrete signaling molecules which are sensed both by the

secreting cell itself (autocrine signaling) and by other cells in the system (paracrine sig-

naling). The signaling molecules are characterized by a diffusion constant D and a con-

stant degradation rate γ. We assume that the molecules diffuse freely in the medium be-

tween the cells as a first-order approximation, but note that in many biological systems

diffusion is anomalous, meaning that the mean-squared displacement of the molecules

scales with time either sub-linearly (subdiffusion, e.g. due to macromolecular crowding,

[Tolić-Nørrelykke et al.; Golding & Cox, 2006]) or super-linearly (superdiffusion, e.g. for

actively driven motion, [Reverey et al., 2015]). Degradation of the signaling molecules

occurs either actively (e.g. through proteases) or due to natural decay of the molecules.

We assume that the cells continuously secrete signaling molecules, at a rate that is con-

stant during the time the signaling molecule concentration requires to reach equilib-

rium. It can then be shown that the steady state profile for the signaling molecule con-

centration surrounding a single cell secreting at rate η is then [Maire & Youk, 2015a]

c(r ) = cR f (r ), wherecR = ηγ

4πRcel lλ(λ+R)
, and f (r ) = Rcel l

r
e(Rcel l−r )/λ

(3.1)

Here we introduced λ = √
D/γ as the characteristic diffusion length of the signaling

molecule.

Next, suppose that the cells respond to sensed signaling molecules by changing their
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Figure 3.1: Schematic of the agent-based multicellular model with indicated model parameters. Adapted from
[Maire & Youk, 2015a] and [Olimpio, 2016].

secretion rate, thereby creating a feedback in the system that allows the cells to dynam-

ically change their secretion rate. Assume that the cells update their secretion rate on a

time scale that is much larger than the time scale on which the signaling molecules reach

steady state. This is a realistic assumption in multicellular systems, where morphogen

gradients are typically quickly established, but cells take considerably longer time to set-

tle into distinct cell states [Heemskerk et al., 2019].

Furthermore, suppose that the cells respond to sensed concentrations in a step-like fash-

ion, such that the cells secrete at either a high rate CON or a low rate COF F , determined

by whether the sensed concentration is above or below a given threshold K (Fig. 3.1). If

the feedback is positive (activating), then cells will secrete at a high rate if their sensed

concentration is above the threshold K . If the feedback is negative (repressive), then

cells will secrete at a low rate if their sensed concentration is above the threshold K .

We first considered digital cells for two reasons. First, experimental studies have shown

that signal transduction pathways such as MAPK or other phospho-relay cascades that

are triggered by ligand-bound receptors and control gene-expressions downstream, as

in our digital cells (Figure 5.1C), can have an effective Hill coefficient with a value of 4

or more (e.g., as high as 32 [Trunnell et al., 2011]). An effective Hill coefficient charac-

terizes the "sharpness" of cell’s response to a ligand [Ferrell & Ha, 2014; Plotnikov et al.,

2011; Trunnell et al. 2011]. Such high numbers are due to multiple molecular parts am-

plifying each other’s effects in combination. A digital (ON/OFF) response models such

high-valued Hill coefficients. The second reason is that a digital response simplifies the

mathematics that describes the response, while retaining its main qualitative features,
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even when the actual Hill coefficient of the system being modeled is relatively low [Alon,

2007].

In this description, the cells have binary states, which we can identify as ‘OFF’ (if they

secrete at the low rate) and ‘ON’ (if they secrete at the high rate). In the following, we

measure all distances in units of λ and all concentrations in units of COF F . Hence we

set λ = 1 and set cR = 1 in Eq. 3.1 for an OFF-cell and cR = CON for an ON-cell. Since

distances on the lattice are measured in units of a0, we also introduce a dimensionless

variable for the cell radius rcell ≡ Rcell/a0. We furthermore take time to be discrete, and

assume that the cells simultaneously update their states. Therefore, at any time step

t the state of the system is specified by X(t ) = {Xk (t )}N
k=1, where Xk ∈ {0,1} is a binary

variable specifying whether cell k is OFF (Xk = 0) or ON (Xk = 1). We can then write the

secretion rate of the cell as

C (Xk ) ≡ (CON −COF F )Xk +COF F . (3.2)

Note that with this definition, C (Xk = 1) =CON and C (Xk = 0) =COF F = 1. The signaling

molecule concentration a cell senses is then the sum of the contributions from all cells

in the system, with larger contributions from cells which are close than from cells which

are far away. In particular, the concentration a cell k senses that is due to cell m can be

written as fkmC (Xk ), where

fkm ≡
 f (rkm) (k 6= m)

1 (k = m)
, (3.3)

is an effective interaction between cells m and k, which in the case of a single molecule

is symmetric (i.e. fkm = fmk ). The total the sensed concentration of a cell k is then

Yk =
N∑

m=1
fkmCm . (3.4)

For later reference, introduce an interaction strength fN as

fN = ∑
m 6=k

fkm . (3.5)

This interaction strength is a measure for how strongly the cells communicate with each

other, and is a uniformly decreasing function of a0. Note that if all cells secrete at the

same rate C , then they would all sense a concentration

Y = (1+ fN )C . (3.6)
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Finally, the binary response of the cells can be written as

Xk (t +1) =
θ(Yk (t )−K ) if interaction is positive

θ(K −Yk (t )) if interaction is negative.
(3.7)

We typically continue updating the system until we reach a steady state, where the state

of all cells does not change upon updating anymore. Alternatively, the system may settle

into a limit cycle, where it cycles through a fixed number of states repeatedly such as in

the case of an oscillation. This will be discussed in more detail in the next section.

To summarize, our model is implemented as follows:

1. Initiate the system in some state X = {Xk }N
k=1.

2. Compute the sensed concentration for each of the cells in the system using Eq. 3.4.

3. Simultaneously update the state of all cells according to Eq. 3.7.

4. If the state of the system has changed, go repeat steps 2-3.

5. Else, terminate the simulation.

3.2. SYNCHRONIZATION AND AUTONOMY IN COMMUNICATING

ANALOGUE CELLS
Up until this point, we have only considered cells that respond to signaling molecules

in a binary fashion, by upregulating or downregulating gene expression levels depend-

ing on whether their sensed concentrations are above a certain threshold. This is in

fact a rather crude approximation based on the observation that many biologically pro-

cesses have binary outcomes: cells fate determination, apoptosis and allosteric switch-

ing are examples of processes that typically have an all or none outcome. However,

rather than requiring a strictly binary response curve, bistability in fact only requires sig-

moidal rather than hyperbolic (Michaelis-Menten) response functions, a phenomenon

which is known as ultrasensitivity [Ferrell & Ha, 2014a]. In recent years, the biochemical

basis of ultrasensitivity has been uncovered in a variety of biological systems. Several

distinct mechanisms can induce ultrasensitivity, including multisite phosphorylation,

stoichiometric inhibitors, and positive feedback [Ferrell & Ha, 2014b]. The response

function describes the system responds to varying level of a stimulus. An example is

the phosphorylation of a signaling molecule X through kinase. In this case, the response

R is the concentration of phosphorlylated X and the stimulus S is the concentration of

kinase. Mathematically, such response functions are typically modeled by the Hill equa-
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tion:

R = Sn

K n +Sn . (3.8)

Here, n is the Hill coefficient of the system and K is a phenomenological parameter that

gives the stimulus concentration at which the response is at half of the maximum value.

Note that unlike in cooperative binding processes, where the Hill equation can be de-

rived from the underlying reaction kinetics, the Hill equation in 3.8 is a phenomenolog-

ical equation based on experimental observations of signal response curves. The Hill

coefficient controls the steepness of the sigmoidal response — higher values correspond

to steeper response curves exhibiting higher degrees of ultrasensitivity. The value of the

Hill coefficient varies drastically between different ultrasensitive signaling transduction

pathways and can be as low as 1.3 and as high as 31 [Ferrell & Ha, 2014a; Trunnell et al.,

2011].

These findings call for a more elaborate study of the dynamics of our system with a sig-

moidal function rather than step function as response function. This extension was first

considered in [Maire & Youk, 2015a], but its results were limited to an extension of the

phenotype diagram calculation to systems with a finite Hill coefficient. Here, we will ex-

amine more thoroughly the dynamics and steady states of the extended model with sig-

moidal response. We start by explaining our main qualitative findings in Section 3.2.2.

In Section 3.2.3, we derive exact solutions of a one-dimensional model describing both

the steady states when the cells interact strongly and the lattice homogenizes, as well as

when they interact weakly and can be treated as autonomous. Section 3.2.4 discusses

the transition from this fully homogeneous phase to an autonomous phase that occurs

by modulating the density of cells. Finally, in Section 3.2.5 we study aspects of the bista-

bility of our system by deriving a mean-field description.

3.2.1. MODELING CELLS WITH CONTINUOUS RESPONSE CURVES

Our starting point is the model introduced in the previous section, which we extend to

consider a continuous response function (Hill function) as we will describe next. In the

continuous picture, the secretion rate of a cell is a continuous variable which we assume

to lie between a lower bound COF F and an upper bound CON . Hence, the state of the cell

is specified by a continuous variable X ∈ [0,1] that scales linearly with the secretion rate.

More precisely, the secretion rate and the state of the cell are related through the relation

C (X ) =COF F + (CON −COF F )X . (3.9)

The sensed signaling molecule concentration of a cell k is the sum over the contributions

from each of the cells in the system, including cell k itself. The contribution from the cell
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itself is equal to its secretion rate C (Xk ), whereas the contribution of a cell l at distance

rkl equals f (rkl )C (Xl ), where f (rkl ) = eR−rkl

rkl
sinh(R). Altogether, this means that we can

write the sensed concentration of cell k as

Yk =C (Xk )+ ∑
l 6=k

f (rkl )C (Xl ). (3.10)

In response to the sensed concentration, the cell updates its secretion rate according to

the aforementioned Hill function,

C (Xk (t +1)) =COF F + (CON −COF F )
Yk (t )n

K n +Yk (t )n , (3.11)

Note that this update function is a sigmoid that varies between COF F (when the cell

senses nothing, Yk = 0) and CON (when the sensed concentration is infinite). Together

with the definition of the cell state, this implies that cell states evolve as

Xk (t +1) = Yk (t )n

K n +Yk (t )n (i = 1,2, . . . , N ). (3.12)

In the limit when n →∞, the Hill function reduces to a Heaviside step-function and the

original system with a binary response is recovered:

Xk (t +1) = θ(Yk (t )−K ). (3.13)

In the case when the feedback of the signaling molecule is negative, i.e. when the sensed

molecule represses its own production, the dynamics is described by a negative Hill

function,

Xk (t +1) = K n

K n +Yk (t )n (i = 1,2, . . . , N ). (3.14)

Note that this corresponds to a decreasing sigmoid function for the secretion rate as a

function of the sensed concentration, with maximum CON (when Yk = 0) and minimum

COF F (when Yk →∞). In the following, we only consider the positive feedback case, but

the case of negative feedback produces interesting oscillatory phenomena and allow for

further studies of the model.

We performed numerical simulations of the continuous model with random initial con-

ditions, where we randomly chose the initial state of each cell to be uniformly distributed

in the interval [0,1]. Other schemes for initiating the system will be discussed in later

sections. The equilibrium condition Xk (t + 1) = Xk (t ) for all cells k is typically only

reached asymptotically as t → ∞. Therefore, we terminated the simulation whenever
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the changes in cell states become smaller than some threshold ε, i.e. when

∀k : |Xk (t +1)−Xk (t )| < ε. (3.15)

What is the interpretation of the value of this ε? If the difference between two single-cell

states is ε, then the difference in expression value between the states is (CON −COF F )ε.

Hence ε gives the minimum change in expression level we allow, in units of (CON−COF F ).

In practice, we typically set ε= 10−5. In the following, we also set COF F = 1, such that all

concentrations are measured in units of the ‘OFF’ secretion rate.

3.2.2. COLLECTIVENESS VERSUS AUTONOMY

Through performing parameter sweeps on our model, we observed that our system has

two distinct phases in which the dynamics simplifies, such that the system becomes easy

to characterize. In all of the following, we will take a Hill coefficient of n = 2, because

in this case the system is bistable both at the single-cell level and population level for

a range of parameters, as will be shown in the next section. However, our qualitative

findings hold for any value of the Hill coefficient which is sufficiently low, such that the

response function is significantly different from a step function. As such, we can identify

"ON" and “OFF” states in analogy to the infinite Hill coefficient model and more directly

compare their features.

The phase space location of the two phases are mostly determined by the variable a0,

which represents the distance between neighboring cells in units of the signaling length.

Note that a0 is inversely related to the density of the cells. At low a0 (high density), com-

munication between cells is strong, causing the cells to synchronize their gene expres-

sion levels. We shall refer to this regime as the collective phase or the strong interaction

phase. At high a0 (low density), communication between cells is weak and cells individu-

ally tune their gene expression over time. We shall refer to this regime as the autonomous

phase or weak interaction phase. As a0 is gradually modulated between these extremes,

we find a gradual transition from one to the other type of behavior with interesting fea-

tures in between.

At very low a0 (strong interaction), we observed that the lattice of cells always evolved

towards a uniform state where all cells acquired identical states, as shown in the exam-

ple of Figure 3.2A. Starting from a disordered initial configuration where each cell has a

random state, we observed that the average gene expression level approached a constant

value, while the variation between cell states uniformly decays to zero. Hence the gene

expression levels of different cells on the lattice become identical to each other. Mathe-
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matically, this homogenization is a consequence of the fact that cells are able to respond

to arbitrarily small changes in the model. In the binary model, the cells only respond

to small differences in sensed concentration, if the concentration is near the sensing

threshold K . However, with a continuous response function, arbitrarily small changes in

the sensed concentration affect the cell’s state (Eq. 3.12). This allows the cells to finely

tune their state to match that of their surroundings. Note that in real biological systems,

sensitivity to sensed concentrations cannot be arbitrarily small, as there are fundamen-

tal limits to how accurately a cell can sense [Berg & Purcell, 1977]. Such effects could be

dealt with by introducing a stochasticity at various parts of the model, but we shall not

discuss this in detail.

As a0 is increased, we reach a transition regime in which there is some collective dynam-

ics, but the system may not become fully homogeneous (Fig. 3.2B). In the example, we

observe that most of the number of cells turn "ON" over time, but at the end of the sim-

ulation a cluster of four “OFF” cells remain. The overall gene expression level increases

slightly, while the variation between cells goes to a constant non-zero value. This is the

only phase in the model in which we observed non-trivial pattern formation, in which

the system becomes more spatially correlated over time. This is the result of two oppos-

ing effects balancing each other out: the tendency for lattices to homogenize if the cells

would couple more strongly and the tendency for cells to be unaffected by neighbors if

they would couple more weakly. In this intermediate regime, only a subset of the cells

switch their state and this depends on the states of their neighbors. The result is the for-

mation of island patterns of gene expression similar to what has been observed in the

binary model.

As a0 is further increased to high values (weak interaction), we also observed simula-

tions where the cells largely evolved independently, similar to what would happen if the

cells did not communicate with each other. In this case, each cell’s state reaches to a

steady state that depends mostly on the cell’s initial states, rather than on the states of

other cells in the system. As such, we observe that the mean gene expression level also

approaches a constant value, while the standard deviation of the cell states approaches

Figure 3.2 (preceding page): From collectiveness to autonomy: example simulations. We show simulations
at different values of the inter-cell spacing a0, which is a measure for the strength of the interaction between
the cells. The filmstrips show snapshots from the simulation. Greener colors correspond to higher levels of
gene expression (see colorbar). Plots below the filmstrips show the average and spread of the cell states (gene
expression level) of the system over time. The variability of the lattice gene expression is defined as the stan-
dard deviation of the cell states. The shaded area indicates this variability, i.e. they mark values within one
standard deviation of the mean. Results are for exact simulations (blue) and for a numerical solution of the
1D uniform lattice system initiated with the same average gene expression value (red dotted line). (A) Fast
synchronization in the strong interaction regime (a0 = 1.5). (B) Slower and incomplete synchronization in the
intermediate interaction regime (a0 = 5.6). (C) Autonomy in the weak interaction regime (a0 = 7.0).
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a relatively high positive value (Fig. 3.2C). Qualitatively, the dynamics in the weakly in-

teracting regime is similar to what would happen if the cells did not communicate at

all.

In the collective phase, the dynamics of the system reduces to that of a one-dimensional

system. Since the cells are placed on a regular lattice, each cell of a uniform lattice senses

the same concentration, and therefore a uniform lattice will remain uniform in the ab-

sence of noise. The state of the uniform lattice is fully described by a single variable

Xm ≡ X1 = . . . = XN , and its time evolution is given by

Xm(t +1) = Ym(t )n

K n +Ym(t )n ≡ fm(Xm(t ))

Ym(t ) ≡ (1+ fN ) [Xm(t )(CON −1)+1] . (3.16)

Note that this is equivalent to the time evolution map of a single cell, up to a multiplica-

tive factor of (1+ fN ) for Ym(t ). This means that the dynamics of a uniform lattice is

equivalent to that of a single lattice, up to a rescaling of the parameters. The required

rescaling is obtained through a single rescaling of the threshold K :

K ′ = K

(1+ fN )1/n
. (3.17)

Hence, the solutions of Eq. 3.16 for a uniform lattice with parameter K are equivalent to

those of a single cell with a parameter K ′. Note that if the interaction is weak ( fN ¿ 1),

then K ′ ≈ K . Therefore, the steady states of Eq. 3.16 also well-approximate the single-

cell steady states in the weakly interacting regime. In this case, rather than having one

equation describing the entire lattice, our system decouples into N identical equations

describing each of the individual cells.

We first note that the dynamics of the uniform lattice model approximates the dynamics

of the average gene expression level of our full system in the strong interaction phase

(Fig. 3.2). More specifically, in this case the dynamics is in excellent agreement with

the simulated average gene expression level (Fig. 3.2). In particular, the both equations

evolve to the same steady state value. At intermediate interaction, the transients of the

two trajectories deviate, but the steady state values still closely approach each other,

since the final configuration is nearly uniform (Fig. 3.2B). Finally, in the weak interac-

tion regime, the agreement between the trajectories is poor (Fig. 3.2C). This is because

the uniform lattice solution represents the dynamics of a single cell (recall that K ′ ≈ K

for weak interaction) and evolves toward one of the single cell steady states, but since
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there are two possible steady states for every cell, the population average is in between

these single cell steady states.

Next, we studied the solutions of the one-dimensional model by determining the num-

ber, location and stability of the fixed points of this system. For the Michaelis-Menten

case of n = 1, it is straightforward to show that there can only be one stable fixed point

whose value varies from low to high as parameters of the system are changed (see Section

3.2.7). For moderate ultrasensitivity at n = 2, this revealed three qualitatively different

‘phases’, whose boundaries depend on the values of a0, K and CON (as well as fN , which

is a function of both a0 and N ) (Fig. 3.3). Two of the phases correspond to monostable

steady states where the uniform lattice had only one solution. For values of K ¿ CON ,

there is a single solution at a high value of Xm — which we identify as the "ON" state

of the system. In the other extreme, when K À CON , the system always evolved toward

a fixed point at low Xm , which we identify as the “OFF” state of the system. For inter-

mediate values between these extremes, there is a bistable phase where both the "ON"

and the “OFF” states are stable. The boundaries of the bistable region depend on the

value of a0. For lower values of a0 (stronger interaction), the boundaries will have rela-

tively higher values of K at any value of CON , since a strong interaction requires a higher

threshold to reach the same effect. These boundaries can be computed analytically for

n = 2, as we show in Section 3.2.7. Furthermore, we checked that the solutions of the

one-dimensional system have the same stability as uniform lattice solutions in the N -

dimensional system (Appendix 3.2.7). Hence, small perturbations to a uniform lattice

steady state will always take the system back to a uniform lattice configuration.

We then compared the findings of the uniform lattice model to batch simulations where

we ran many simulations for a fixed set of parameters with different initial states. We

did this at fixed values of a0 in the strongly interacting regime and the weakly interacting

regime. In the strong interaction phase (a0 = 1.5), the bistable region lies in a narrow

region slightly above the line K = CON and starts at intermediate values of K and CON ,

indicating that for very low values of either K or CON there is no bistability. The steady

state solutions of the system show an interesting bifurcation diagram (Fig. 3.4B), which

shows how the steady states change as the parameters of the system are altered. Let us fix

CON and discuss what happens as K is increased from low to high values. At a low CON ,

the system is always monostable, and we find that increasing K decreases the value of

the steady state XSS at the single fixed point with a rather sharp transition between the

low and high values. At higher values of CON , we find a bistable region flanked by two

bifurcations as K is increased across the range of examined values. At high values of K ,

there is a single steady states with XSS ≈ 0. At low values of K , there is a single steady
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state with XSS ≈ 1. As K is modulated between these extremes, the two solutions coexist

in an intermediate region through the appearance of an additional unstable fixed point.

As K is increased, first a saddle-node bifurcation marks the appearance of a low fixed

point and intermediate unstable state. As K is further increase, another saddle-node bi-

furcation occurs as the unstable state joins the high fixed point and both are annihilated,

so that only the low fixed point persists. A consequence of this bifurcation diagram is the

appearance of hysteresis, marked by a history-dependence of the steady state as the pa-

rameters are modulated across the bistable region. Here, it implies that if K is gradually

increased from very high value to some intermediate value, the system would remain

stable at a relatively high fixed point, until it makes a sudden jump to the low fixed point.

If K is gradually decreased from a very low value up to the same intermediate value, the

system would remain at a relatively low fixed point, before making a discontinuous jump

to the high fixed point as K is increased further. From our batch simulations, we found

that the system indeed always becomes uniform across the examined parameter range

(data not shown). The fixed points also correspond nicely to those computed from the

uniform lattice model, with a region of bistability as predicted (Fig. 3.4D). Note that the

intermediate fixed points are missing as they correspond to unstable steady states and

are practically never observed in simulations.

3.2.3. EXACT SOLUTIONS OF A ONE-DIMENSIONAL MODEL

In the weakly interacting regime, the phase diagram computed in Fig. 3.3 applies not to

the entire lattice, but to individual cells of the system. In the monostable regions, indi-

vidual cells are monostable, and therefore the entire lattice will also have a single fixed

point where all the cells are identical. However, this occurs not due to synchronization

between cells, but because each individual cell evolves towards the fixed point. In the

bistable phase, since each of the cells is bistable, there are 2N possible steady states of

the system. As a function of K and CON , this bistable phase corresponds to a similarly

shaped narrow region as the bistable region for strong interaction (green region in Fig.

3.4E). The simulations confirm that outside of this region, the lattice always evolves to

the same final state (Fig. 3.4F). In contrast, inside the bistable region, we uncovered a

range of possible final states (with different values of average gene expression level 〈Xk〉
as shown in Fig. 3.4F). Altogether, these results confirm that we can use Eq. 3.16 to study

the steady states of the system in the collective phase and in the autonomous phase.
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(Theory, uniform lattice)

All cells “ON”

All cells “OFF”

Both possible

Steady state

Global phase diagram

Figure 3.3: Global phase diagram shows the possible steady states of a uniform lattice system, determined
by solving the one-dimensional model given by Equation 3.16. In the red region, there is a single steady
state corresponding to a low expression level for all cells. In the green region, there is also a unique steady
state corresponding to a high expression level. In the region between the red and green regions, the system is
bistable. Axes variables are the distance between neighboring cells a0, the ON-cell secretion rate CON and the
sensing ON-threshold K .

3.2.4. TRANSITION FROM COLLECTIVE TO AUTONOMOUS DYNAMICS

We next studied how the system changes from the collective synchronization regime to

the autonomous regime as we gradually modulate the parameters of the system (Figs.

3.5, 3.6). We did this by changing a0 at fixed value of K ,CON , such that in the collective

phase it is monostable (the system homogenizes and always reaches the same steady

state) whereas in the autonomous phase it is bistable (each individual cell has two sta-

ble fixed points). By tuning a0 between these extremes, we found a transition region in

which the system shows more complicated dynamics that cannot be predicted from the

one-dimensional model only. In particular, we observed that the cells were able to par-

tially synchronize, forming islands of cells with similar gene expression, but that these

islands often could not spread across the entire system. This type of dynamics is similar

to what happens in the active phases (activation/deactivation) of the binary model. As

such, it seems to be the only regime in the continuous response model for which non-

trivial pattern formation is possible.

Our next goal was to identify variables — analogous to order parameters in statistical

physics — which show how features of the system change as the system transitions from

the collective phase to the autonomous phase. Because the trajectories in the transition

phase show considerable variability depending on their initial configuration, the ‘order

parameters’ we examined correspond to statistical quantities based on results of many
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Figure 3.4 (previous page): (A-B) Theoretical results in the strong interaction regime (a0 = 1.5). (A) Number of
fixed points as a function of K and CON . (B) Steady state solutions across the studied range of K and CON . For
some values of K , CON , there is a unique solution, whereas for other there are three solutions. In the latter case,
the middle solution is always unstable. (C-F) Simulation results in the strong and weak interaction regimes. For
each value of (K ,CON ), we chose initial mean gene expression level 〈Xk 〉(t = 0) = 0,0.1, . . .1.0 and performed
10 simulation for each 〈Xk 〉(t = 0). (C-D) Strong interaction regime (a0 = 1.5). For each of the simulations, the
cells synchronized their gene expression levels such that the final state is always a homogeneous lattice. (C)
Number of fixed points for every fixed value of K , CON . (D) Location of the stable fixed points. (E-F) Weak
interaction regime (a0 = 6.0). We observed the existence of autonomous steady states, which are characterized
by non-uniform steady states where individual cells obtain different final states mostly due their individual
dynamics rather than due to neighbor-induced transitions. (E) Phase diagram shows for which values of K ,
CON non-uniform steady states are possible. (F) Location of the stable fixed points.

simulations. In the following, we shall discuss four such quantities, all of which seemed

to show a continuous trend as a0 was varied across the transition regime. For each of the

quantities, we discuss their ability to capture the main features of the ‘phase transition’.

Three of the quantities are also dynamical quantities that can be studied as a function of

time, and we will discuss their dynamics alongside their final values used to characterize

the transition.

Fraction of non-uniform lattices The first measure we considered was the fraction of

non-uniform lattices. For each value of a0, we ran a large number of simulations and

counted the fraction of simulations with final states where the cells did not have (nearly)

identical gene expression levels. More precisely, we defined a lattice as non-uniform

whenever the standard deviation between the cells was smaller than some threshold ε.

In the collective phase, all lattices are uniform and this fraction equals to zero. In the

autonomous phase, if we start with random initial configurations, we expect none of the

lattices to become uniform. As a0 is increased, we observe a sharp increase from 0 in the

collective phase to a value close to 1/2 in the transition region (Fig. 3.5A). Upon further

increasing a0, the metric sharply increases to one. Upon closer inspection, it appears

that the metric varies smoothly between these extremes (see inset of Fig. 3.5A). However,

the plateauing value of 1 is reached before the onset of the autonomous phase identified

from other metrics. This is because the system does not need to be fully autonomous

(such that each cell’s final state is determined only by its own initial state) in order to

produce non-uniform final states. The early plateauing of the metric in the transition

phase only shows that within this regime, the system never fully synchronizes anymore.

In short, the fraction of non-uniform final state lattices is an intuitive metric that tells

us whether the system reaches a homogeneous final state or not. However, its main

drawback are that it does not directly quantify the degree of autonomy of the system is

and that the findings depend on the initial states of the simulations chosen.
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Figure 3.5: Transition between the collective phase and the autonomous phase. (A-D) Various measures
characterize the transition to autonomy as the inter-cell distance a0 is gradually increased. At low a0, we have
a collective phase where the system always synchronizes to become uniform (red). At high a0, each cell largely
follows its intrinsic dynamics regardless of the what the rest of the system does (blue). We focused on the
transition region in between these extremes (yellow). For each value of a0, we performed 500 simulations with
cells that have state Xk = 0 or Xk = 1 with probability 1/2 each. Insets show a zoomed in region (5.25 ≤ a0 ≤ 5.3)
where the measures change abruptly. (A) The probability to generate a non-uniform steady state becomes
non-zero outside the collective phase. We define non-uniform steady states as those for which the standard
deviation of the cell states in steady states is smaller than some threshold ε = 0.01. (B) The fraction of cells
which have a final ‘ON’ state in the digital representation shows a sudden drop at the autonomy transition.
(C) The Hamming distance between the digitized cell states of the initial and final states is a measure for how
much the system has evolved, and precisely marks the onset of the autonomy phase. (D) The modified spatial
index I2 (Eq. 3.20) acquires non-zero values on average in the transition region, where pattern formation is
possible.

Fraction of "ON" cells The next metric we considered is the fraction of "ON" cells in

a binary description of the system’s states. Since we are working in the bistable regime

of the n = 2 model, we could effectively treat the cells as binary in a static description

of their state, so we can apply the earlier developed tools and concepts for binary cells

to describe these cells. In particular, one useful quantity to consider is the fraction of
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"ON" cells in the steady state of the system. Below, we first formally construct a binary

description and then examine how this fraction of "ON" cells changes as a0 was tuned

across the transition region.

We defined a cell to be "ON" if its expression is higher than that of the unstable fixed

point (for a uniform lattice), and “OFF” if it is lower. Let X ∗
u be the unstable fixed point

of the uniform lattice model (Eq. 3.16). Formally, given a state X ∈ [0,1]N , we then define

a corresponding state X̃ ∈ {0,1}N by converting each cell into a binary variable. Define a

function c = (c1,c2, . . . ,cN ) : [0,1]N → {0,1}N , which on each component acts as

ci (Xi ) = θ(Xi −X ∗
u ). (3.18)

In reality the unstable fixed point and basins of attraction for an interacting system of

cells may not precisely correspond to that of the uniform lattice system. Nevertheless, as

a first approximation, for cells whose state is not close to X ∗
u this approximation should

be sufficient to tell whether they remain in their original state or transition to the other

state. Furthermore, this approach can be extended straightforwardly to systems with

more than two single-cell fixed points. This occurs in systems with higher Hill coeffi-

cient. If the single-cell system has m fixed points, separated by m − 1 unstable fixed

points, then we identify m states {0,1, . . . ,m}, which we order according to their X value.

We would then map each cell onto one of these m states depending on which basin of

attraction it falls in.

The fraction of "ON" cells of the steady state always takes a value of either 0 (all “OFF”) or

1 (all "ON") in the collective phase. In the autonomous phase, the fraction equals that of

the initial configuration of the system. Since we independently choose each cell’s gene

expression with P [Xk = 0] = P [Xk = 1] = 1/2), our final state fractions are also binomially

distributed with parameters (N , p = 1/2) and in particular with mean 1/2. Furthermore,

this metric seems to vary smoothly between these extremes as a0 is increased (Fig. 3.5B).

Just like the previous metric, this metric precisely determines the onset of the transition

phase from the collective phase, but does not precise determine the onset of the au-

tonomous phase. The onset of the transition phase can be defined as the first value of a0

where we observe a trajectory where not all cells are “ON” or “OFF” anymore. As such, it’s

identical to the fraction of non-uniform lattices for determining the onset of this tran-

sition phase. At the other end of the transition phase, the metric gradually shifts to a

value of 1/2. However, because also in the autonomous phase the fraction has a spread

around its average value of 1/2, it is hard to precisely pinpoint where this region starts,

unless one exhaustively simulates all states of the system.

We also examined the dynamics of the fraction of “ON” cells across this transition range

(Fig. 3.6A). Our first observation is that with the set of parameters chosen, the cells only
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seemed to be able to activate, i.e. switch from “OFF” to “ON”, but not vice versa. Intu-

itively, this is because of the asymmetry of the “OFF” and “ON” states: the “ON” state

has a far larger basin of attraction and hence it is easier to collectively activate than to

deactivate. We further note that with similar initial conditions, the individual trajecto-

ries show considerable heterogeneity, just as in the binary model. Let us now examine

what happens as a0 is increased in more detail. At a0 = 5.0 (collective phase), all cells

activate over time, such that the fraction of ON cells always reaches 1 eventually. As we

reach the transition regime, at a0 = 5.4, the system no longer fully activates, but reach an

equilibrium after a fraction of the cells has been activated. Upon further increasing a0

to 5.6, we see very few activation events. What is surprising here is that the activation of

a single or a few cells now takes a substantial amount of time (around 60-80 time steps),

indicating at slow dynamics whereby the cells states change by small amounts at each

time step. Finally, in the autonomous regime at a0 = 6.0, none of the trajectories shows

any activation and the fraction of “ON” cells remains constant over time.

Hamming distance The next measure we considered describes how much the initial

and final configurations in our system differ from each other. This is directly related to

the degree of autonomy in the system. In the autonomous state, cells never transition

between different basins of attraction, so in the binary picture, there is no difference

between the initial and final states. In the collective phase, depending on the initial con-

dition, possibly many cells switch state to be in tune with their neighbors, and the initial

and final states differ considerably. To quantify this difference, we considered a distance

function dH : [0,1]N × [0,1]N →R between two states X and Y

dH (X ,Y ) =
N∑

i=1
|c(Xi )− c(Yi )| (3.19)

Hence, we consider the difference between the digitized states of two different config-

urations. This metric is known as the Hamming distance and has been proposed to be

a suitable metric for measuring distances between different states in a cellular automa-

ton [Wolfram, 1983]. We applied this metric to measure the difference between the ini-

tial state Xi ni and final state Xeq of the system. In the collective phase, on average we

have 〈dH (Xi ni , Xeq )〉 = N /2 with our choice of initial conditions, since roughly half of

the cells have each of the two binary states initially, but as the system homogenizes, all

cells within one of these groups change to the other state. In the autonomous phase,

dH (Xi ni , Xeq ) = 0 by definition, since none of the cells should change their basin of at-

traction and jump to the other fixed point. Hence, the Hamming distance provides an

exact definition of the autonomous phase. We see that its value also shows a monotonic,

continuous trend from N /2 to 0 upon increasing a0 (Fig. 3.5C). Close to the autonomy
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phase border, the Hamming distance takes very small but non-zero values. This is when

only a small fraction of cells within each simulation changes their state. Nevertheless,

this indicates that the system is not fully autonomous yet, and therefore the Hamming

distance can precisely indicate the onset of autonomy in the system.

The dynamics of the Hamming distance contains comparable information as the frac-

tion of “ON” cells (Fig. 3.6B), with a few notable differences. The Hamming distance

does not distinguish between activation and deactivation, so each change in value could

be both due to an “ON” cell turning “OFF” as well as an “OFF” cell turning “ON”. Fur-

thermore, in the collective phase, the maximum value the Hamming distance can reach

depends on the initial fraction of “ON” cells, which is why the trajectories in the a0 plot

do not plateau at the same levels. Without additional information about the initial state,

we cannot therefore not tell whether the trajectories has "maximally diverged" from its

initial state.

Modified spatial index Since the transition region shows examples of trajectories that

become spatially organized, we sought to define a metric to quantify the degree of spatial

organization of the patterns generated. The previously defined spatial index (Eq. 4.1 in

Section 4.2.2) does not generalize well to our continuous system. This is because the

spatial index is undefined for a uniform lattice. However, this can be fixed by removing

the variance from the denominator, so that the new quantity becomes

I2 = Θ

fN
− (2〈Xk〉−1)2, (3.20)

where Θ = 1
N

∑
k,l

f (rkl )X̃k X̃l (with X̃ ∈ [−1,1] defined as X̃ = 2X − 1). The downside of

leaving out the variance is that it becomes hard to interpret the numerical value of I2.

However, our main goal here is to distinguish homogeneous and disordered lattices —

both of which have I2 ≈ 0 here, from spatially organized patterns, which have |I2| > 0. To

see this, note that for a homogeneous lattice Θ= fN (2〈Xk〉−1)2, and therefore I2 = 0. In

the autonomous phase, we generate random initial configurations that tend to be spa-

tially disorganized. Since our metric differs from the previous metric only by a constant,

these configurations should also have I2 ≈ 0. However, as seen from Fig. 3.5D, there is

considerable variability in the autonomous phase. Therefore, also the modified spatial

index cannot precisely indicate the onset of the autonomous phase, while it can precisely

indicate the end of the collective phase. In the transition region, the pattern formation

discussed earlier leads to higher values of the spatial index than in the other phases.

Dynamically, the modified spatial index shows very different time traces for the differ-

ent phases of the system (Fig. 3.6C). In the collective phase (a0 = 5.0), I2 first increases
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rapidly as “OFF” cells close to “ON” cells increase their gene expression level, since this

drives the formation of islands of cells with similar gene expression. However, as more

and more cells turn “ON”, the lattice becomes more homogeneous over time and the

I2 gradually decays to zero. In contrast, in the transition region (a0 = 5.4 and a0 = 5.6)

only a few cells activate, which tends to increase the spatial index over time without ever

reaching that critical mass of “ON” cells at which I2 starts decreasing. Finally, in the

autonomous phase (a0 = 6.0) the spatial index rapidly reaches a constant value as indi-

vidual cells reach their steady state values, and remains constant and close to zero over

time.

In summary, we have defined different metrics for distinguishing between the collective

phase and the autonomous phase in the system. Three of these metrics — the fraction of

non-uniform final states, the mean fraction of “ON” cells in the final state and a modified

spatial index — precisely determine the boundary between the collective phase and the

transition region. The remaining metric — the Hamming distance between initial and

final state — precisely determines the boundary between the transition region and the

autonomous phase. Apart from these metrics, there are more metrics that can be used

either as substitute for some of the metrics we discussed or to provide additional infor-

mation. One such metric is the variability in gene expression of the system, quantified by

the standard deviation of the cell states σ(Xk ) =
√
〈X 2

k 〉−〈Xk〉2. This variability goes to

zero if and only if the system becomes homogeneous, and is therefore a direct measure

for the degree of homogeneity in the system (Fig. 3.6D). A homogeneous system requires

that the cells in the system are either all “ON” or all “OFF”, but the reverse does not need

to be true: if all cells had the same binary states, there could still be considerable varia-

tion in their gene expression levels. This is because the binary states are defined in terms

of the basins of attraction, which have a finite extent. To study the variability among the

groups of “ON” and “OFF” cells in the autonomous system, we separately examined the

standard deviation of the cells states of the “ON” cells and that of the “OFF” cells. This

showed that after a transient phase, there was very limited variability among the cells

within each of both groups (Fig. 3.6E). Why do the cells maintain their binary character

in this transition phase? Why do we hardly find any steady states with cells whose state

deviates significantly from one of the single-cell fixed points? To address these questions,

we resorted to a different theoretical description.

3.2.5. PERSISTENCE OF BISTABILITY

To explain the binary character of the steady states (Fig. 3.7A), we resorted to a reduced

description of the system which facilitates analysis of the steady states while preserving
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Figure 3.6: Dynamics of various metrics describing trajectories in and close to the transition region between
the collective and the autonomous phases. We plot results from 100 simulations for values of a0 = 5.0 (collec-
tive phase), a0 = 5.4, a0 = 5.6 (transition phase), and a0 = 6.0 (collective phase). The simulations were initiated
with random states where each cell had probability 1/2 to have state 0 and probability 1/2 to have state 1. (A)
The fraction of cells identified as ‘ON’, i.e. which are in the basin of attraction of the higher steady state (see Eq.
3.18). (B) Hamming distance between the binary states of at time t and the initial state at time 0. (C) Spatial
index I2 (see Equation 3.20) (D) Variability in gene expression as measured by the standard deviation of all cell
states σ(Xk ). (E) Variability of the populations of identified ‘ON’ and ‘OFF’ cells.
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essential information required to explain the persistence of bistability across a range of

a0 values. The main idea of the method is to reduce the full system with N interact-

ing cells to an description involving only a single cell coupled to an effective medium

representing the rest of the system Fig. 3.7B. This is analogous to mean-field theory in

statistical physics, where for the coupling of a one element to the rest of the system, one

replaces a sum over all elements by a single population-averaged term. However, our

goal here was not to use the mean-field description to find an approximate solution to

our system, but to deduce statements on the range of possible steady state solutions our

system can have.

In the mean-field picture, we first choose a random cell k and rewrite the signaling

molecule contribution from the rest of the system as

Y other
k ≡ ∑

l 6=k
f (rkl )C (Xl ) = ∑

l 6=k
f (rkl ) ((CON −1)Xl +1)

= (CON −1)
∑
l 6=k

f (rkl )Xl +
∑
l 6=k

f (rkl )

= fN

(
(CON −1)

1

fN

∑
l 6=k

f (rkl )Xl +1

)
≡ fN C (XMF ). (3.21)

In the last step we introduced XMF ≡ 1
fN

∑
l 6=k

fkl Xl as the effective mean-field state of

the environment of cell k. By construction, the mean-field variable XMF can take any

value on [0,1], since all Xl are continuous on [0,1]. Therefore, in this reduced picture

our system is reduced to a two-variable system with (Xcel l , XMF ) on [0,1]× [0,1], where

we write Xcel l = Xk . The time-evolution of the single cell can then be written as

Xcel l (t +1) = Ycel l (t )n

K n +Ycel l (t )n =
(
C (Xsel f (t ))+ fN C (XMF (t ))

)n

K n + (
C (Xsel f (t ))+ fN C (XMF (t ))

)n

≡ fMF (Xcel l (t ), XMF (t )). (3.22)

Note that up till this point, our description is exact, i.e. the time-evolution equation

3.22 describes the exact evolution of cell k. To obtain the dynamics of the reduced two-

variable system, we would need to derive a time evolution equation for XMF , which

we did not attempt here. Instead, we focused on the steady states of the reduced sys-

tem considered as a single-variable system for Xsel f with XMF as a constant parame-

ter. This is because a a steady state of the full system (Eqs. 3.10, 3.12) is necessarily

a steady state of this reduced mean-field system. Namely, suppose that (X1, . . . , XN ) is

a steady state of our full model, such that Xk (t + 1) = Xk (t ) for all 1 ≤ k ≤ N . For any

cell k, we can then calculate a mean-field variable X (k)
MF (t ) ≡ 1

fN

∑
l 6=k

fkl Xl (t ), such that
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the update equation Eq. 3.22 with fMF (Xk (t ), X (k)
MF (t )) gives the same result for Xk (t +1)

as Eq. 3.12. Therefore, fMF (Xk (t ), XMF (t )) = Xk (t ) and Xk (t ) is a steady state of the

mean-field model. However, the converse does not need to be true: a steady state of the

mean-field model does not necessarily correspond to a steady state of the full system.

Suppose we have fixed point of the reduced system 3.22. This corresponds to a set of

variables (Xsel f , XMF ) such that Xsel f remains constant under Eq. 3.22. However, since

for the full system to be in equilibrium we must have a fixed point for every cell that we

choose to be Xsel f . Therefore, this corresponds to finding N fixed points of the form

(Xk , X (k)
MF ) such that fMF (Xk , X (k)

MF ) = 0. Since X (k)
MF is a function of the N − 1 variables

X1, . . . , Xk−1, Xk+1, . . . , XN , there are only N variables for the N constraints. Hence, there

is no guarantee that there is a solution to this set of nonlinear equations. Thus, any fixed

point of our full model must be a steady state solution for Xsel f in Eq. 3.22, but not every

steady state of Eq. 3.22 corresponds to a fixed points of the full model.

We computed the fixed points of the mean-field model by numerically solving for Xsel f

by setting Xsel f = f (Xsel f , XMF ) in Eq. 3.22, while treating XMF as a continuous param-

eter that we varied. This results in a cubic equation in Xsel f , which implies that for any

fixed value of XMF , there is at least one real and at most three solutions for Xsel f . The re-

sulting solutions are continuous curves in the two-dimensional space spanned by Xsel f

and XMF space (Fig. 3.7C). Note that the intersection Xsel f = XMF precisely corresponds

to the uniform lattice solutions, since they coincide with the solutions of Eq. 3.16.

As a0 is varied from the synchronous regime to the autonomous regime, we observe the

appearance of an extra solution branch consisting of an a low-valued stable solution

and intermediate unstable solution (middle plot with a0 = 4.0 in Fig. 3.7C), which is

present for a set of low values for XMF . This means that a cell in a weakly secreting en-

vironment can be bistable, but if its surrounding concentration of signaling molecules

exceeds some threshold (determined by the location of the saddle-node bifurcation in

the mean-field solution plot), then it is forced to the high steady state. As a0 is further in-

creased, the lower branch moves to the right, until the bifurcation point reaches XMF = 1,

after which the cell state always has three steady states regardless of the environment

(right plot with a0 = 7.0 in Fig. 3.7C).

We furthermore observed that the solutions varied less with XMF as a0 was increased.

This is intuitive, since a weaker interaction of the cells implies that the steady states de-

pend more on the internal dynamics of a cell (due to self-communication) and and less

on its external coupling to the environment. We can quantify this dependence on XMF

by considering the spread in values for each solution branch of the mean-field model.

We measured this by taking the difference between the maximum and minimum values

of that branch, where for the lower branch (or whichever has two solutions) we take only
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the stable solution into account. Formally, let us denote X (i )
SS (XMF ) as the steady states

solution of Xsel f as a function of XMF , and i = “ON”, “OFF” denote the stable solutions

of the system. Let D (i ) ⊆ [0,1] denote the domain of X (i )
SS on which there is a solution.

Then for each solution we can define the maximal spread in values due to environmen-

tal changes as

σ(i )
max ≡ max

XMF ∈D(i )

(
X (i )

SS (XMF )
)
− min

XMF ∈D(i )

(
X (i )

SS (XMF )
)

. (3.23)

This quantity σ(i )
max is also graphically depicted in the steady state solution plots in Fig.

3.7C.

We then examined how this maximal variability changed as we tuned the value of a0. As

expected, σmax generally decreased as a function of a0, with some difference between

the “OFF” and the “ON” cells (left plot of Fig. 3.7D). The curve for the “OFF” cells starts

around a0 ≈ 2.8 since this is where the lower solution branch first appeared. It then first

increases in value, but from about a0 ≈ 6 onward both maximal variability values for

“ON” and “OFF” cells decrease with a0.

Furthermore, we verified that these theoretically derived upper bounds are consistent

with the variability in the steady states found in simulations (right plot of Fig. 3.7D).

We performed multiple simulations for each a0 and determined the variability from the

standard deviation in cell states for both the “ON” and the “OFF” cells. We found for

all simulations that the actual variability was indeed lower than the theoretical upper

bounds determined. On average, the simulated variabilities were considerably lower

than the theoretical upper bounds, with a higher variability for the “OFF” cells than for

the “ON” cells, in accordance with expectations.

3.2.6. DISCUSSION

In this section, we introduced and analyzed an extension of the multicellular model in-

troduced in Section 3.1, in which the cells have a continuous secretion rates and respond

to sensed concentrations of signaling molecules through a sigmoidal response function.

We identified two distinct qualitative phases of this model, which occur when the cell

density is very high or very low. At high density, the cells strongly couple to each other

and tend to synchronize their gene expression levels, such that the steady state is always

a homogeneous lattice where all cells have identical states. The steady states of this sys-

tem can be found by solving a one-dimensional system for a homogeneous lattice, which

is equivalent to that of a single cell up to rescaling of parameters. At low density, the cou-

pling between cells is weak and the cells are autonomous, responding mostly to their

own signaling molecules. The dynamics in this regime is qualitatively identical to that of

a system of N independent cells. The boundary between these two regimes is not sharp

and there exists a large transition region in which less simplistic dynamics occurs. Here,
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Figure 3.7 (previous page): (A) Example of a steady state configuration of the system. Darker colors correspond
to higher levels of gene expression. The final states of the cells are mapped onto the one-dimensional axis
and are observed to fall within two tightly bound clusters, which we identify as “ON” and “OFF” cells. (B)
Schematic of the mean-field picture. The dynamics of the full system is described by N variables. In the
mean-field approach, we select a cell k and map the N −1 variables describing the rest of the system onto a
single variable describing the effective the cell is in. The two-variable system can be solved and its solutions
are easy to visualize. (C) Solutions of the mean-field model for various interaction strengths (described by
the inter-cell spacing a0). At low a0, there is a single solution, but its value can vary considerably depending
on XMF . The spread in the values is denoted σmax and is a measure for the maximum variability in gene
expression between individual cells. At higher a0, two more solutions appear in the form of a saddle-node
bifurcation. The upper branch (in between the two other solutions) is unstable while the lower branch is
stable. As a0 is further increased, this solution spreads across a larger range of XMF values until it percolates
across the entire range of XMF . (D) The maximum spread in the mean-field solution is an upper bound for the
variability between cells of the same solution branch (i.e., among “OFF” cells and “ON” cells). Left: theoretical
calculations for σmax across a range of a0. Right: the actual variability in the two clusters of cells (“ON” and
“OFF”) in simulation steady states. The dotted lines indicate the calculated theoretical upper bounds. For each
a0, we performed 500 simulations and calculated the standard deviation of cell states among “ON” and “OFF”
cells for each steady state. The reported values are averages over these 500 simulations.

the system may partially activate or deactivate and form patterned islands of cells with

identical gene expression levels. To characterize the transition between the autonomous

phase and the collective phase, we introduced and discussed various statistical metrics

that characterize certain aspects of the transition. The fraction of non-uniform final

states, the fraction of “ON” cells, the Hamming distance between initial state and fi-

nal state and a modified spatial index all allow us pinpoint the exact boundary of one of

the two phases with the transition region, and appear to vary smoothly as the distance

between neighboring cells is changed. Remarkably, with suitably chosen parameters,

the system retains a binary character throughout all phases, whereby the steady state

cells separate into a group of “ON” cells and a group of “OFF” cells that have very close

gene expression levels. This phenomenon can be explained through a mean-field pic-

ture, where we reduce the system to a single cell coupled to an effective environment.

Solutions of the mean-field model show the sensitivity of the single-cell steady states to

the environment of the cell.

The synchronization of cell states when the cells interact strongly is qualitatively not sur-

prising, but begs the question whether such behavior arises from more general mathe-

matical principles underpinning our model. Such principles could be searched for in

the literature on coupled map lattices, which are models of discrete coupled units with

continuous state variables that evolve in discrete time [Kaneko, 1993]. The collective

tuning of gene expression levels is also highly reminiscent of synchronization of coupled

identical oscillators. Such systems have seen an overwhelming number of studies in the

context of mechanical oscillators, biological clocks, coupled neurons and many other

linked oscillators [Strogatz, 2004]. In our system, changing the response function from

a sigmoid with positive slope (positive feedback, activation) to a sigmoid with negative
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slope (negative feedback, repression) produces a system that shows oscillations in gene

expression level. At high density, the oscillations of different cells synchronize while at

low density individual cells oscillate independently. Further work should elucidate the

connection between our model and more established models of coupled oscillators.

One particular approach that could be relevant for our system is the derivation of dy-

namical equations for the moments of the system. Here, one first defines a number of

statistical quantities of a system of many coupled units such as the mean, variance and

higher moments of some variable one is interested in. One can then often derive exact

mathematical expressions for the time evolution of these moments, which match well

with simulations of the original, possibly stochastic model. This approach has proven

useful for a variety of systems of globally coupled units including coupled oscillators [De

Monte & d’Ovidio, 2002; De Monte et al., 2003], ecology [Bolker et al., 1997], chemotaxis

[Young et al., 2019] and chemical reaction networks [Gonzales et al., 2019]. In our sys-

tem, one particular result that we wish to derive is to show that the variance of the cell

states goes to zero in the strong interacting regime, whereas it remains positive in the

weakly interacting regime.

Finally, there are many features of biological systems that could be added to make the

model more realistic and more widely applicable. Several such extensions have been

defined and studied in the extended model involving multiple genes, which will be dis-

cussed in Chapter 5, but could also be included in the present model. Heterogeneity

between cells could be implemented by randomly generating different parameters for

each cell. Stochastic dynamics due to stochastic gene expression, limits to sensing pre-

cision and other random effects should be included. Different spatial arrangements of

cells in both lattice and non-lattice settings should be studied. Effects such as cell motil-

ity, mechanical interactions and hydrodynamic flows could also be integrated into the

model.

3.2.7. APPENDIX

For a uniform lattice or a single cell, we can exactly solve for the steady states in a number

of special cases. Here we consider the cases n = 1 and n = 2 and analytically derive their

steady state solutions.

Michaelis-Menten n = 1 system is monostable For non-ultrasensitive sensing, corre-

sponding to a Hill coefficient n = 1, the system is always monostable. This is evident

from plotting Xm(t + 1) against Xm(t ), but also follows from a straightforward calcula-

tion. The steady states are obtained from Eq. 3.16 with fm(Xm) = Xm , which for n = 1
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becomes a quadratic equation of the form aX 2
m +bXm + c = 0 with

a = (CON −1)(1+ fN )

b = (CON −2)(1+ fN )−K

c =−(1+ fN )

∆= b2 −4ac = (K −CON (1+ fN ))2 +4(1+ fN )K . (3.24)

Since ∆ > 0 for any choice of parameters, there are two real solutions to the quadratic

equation. However, because a > 0,c < 0, we have ∆> b2. Therefore, one of the solutions

is negative. It follows that there is only one positive solution given by X ∗
m = −b+p∆

2a . Note

that by construction of Eq. 3.16, 0 ≤ X ∗
m ≤ 1.

Ultrasensitive n = 2 system has a region of bistability With Hill coefficient n = 2, the

solution to Xm(t +1) = Xm(t ) (Eq. 3.16) gives a cubic equation in the parameters a0, K

and CON . This implies that there is at least one and at most three fixed points for the

uniform system with n = 2. The solutions of this cubic equation are determined by the

determinant

∆= 18abcd −4b3d +b2c2 −4ac3 −27a2d 2

a =−(CON −1)2

b = (CON −1)2 −2(CON −1)

c = 2(CON −1)−K 2 −1

(1+ fN )2

d = 1.

If ∆ > 0, there are three real solutions, two stable fixed points with an unstable fixed

point in between. If ∆< 0, we have only one stable fixed point. The border between the

bistable and monostable regions is determined by∆= 0. This expression can be reduced

to a trivial solution K 2 = 0 and an expression that is quadratic in K 2,

−4C 3
ON +

(
C 2

ON +18CON −27
)

( fN +1)2 K 2 − 4

( fN +1)4 K 4 = 0. (3.25)

This quadratic equation in K 2 can be solved straightforwardly, and since K is positive we

directly obtain solutions for K as a function of CON and fN . Depending on the values of

these parameters, there can be either two or no solutions to this equation. In the case of

two solutions, these correspond to the upper bound and lower bound of bistable region.
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Stability of the uniform lattice solution (n = 2) For the one-dimensional model of a

uniform lattice (Eq. 3.16), stability is easily determined. Whenever the system has three

fixed points, the outer two are stable and the middle one is unstable. However, we would

like to know whether the stable fixed points are also stable in the full system where cells

can attain different expression levels. In other words, we would like to know whether the

system is stable with respect to perturbations in the larger phase space [0,1]N . This can

be done by taking the linearization of Eq. 3.12, which we will denote as f (X (t )) ≡ X (t+1)

for the moment, and computing eigenvalues of the Jacobian matrix D f (X ) evaluated at

the fixed point XSS :

[D f (XSS )]i j = ∂ f (i )(X )

∂X j
|X=XSS (3.26)

The system is stable if and only if all eigenvalues of D f (XSS ) have norm smaller than

one (i.e. |λi | < 1 for all 1 ≤ i ≤ N ). Using this approach, we verified that the uniform

lattice fixed points show the same stability as the one-dimensional system (bifurcation

diagrams of solutions at constant K are shown in Fig. 3.8). The system is either monos-

table with a single fixed point, or bistable with an intermediate unstable fixed point. Un-

surprisingly, the same stability behavior persists in the autonomous phase (not shown).

Here, the system approximates the uncoupled case (without cell-cell interaction), where

the fixed points that are stable in the one-dimensional model are trivially stable in the

N -dimensional system.
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Figure 3.8: Stability of the uniform lattice solution for the bistable system with n = 2. (A-B) Bifurcation
diagrams with steady state solutions for Xm as a function of CON , at fixed values of K . Stable solutions are
shown in blue, unstable solutions in red. Stability is determined by computing largest eigenvalue λmax of the
linearized map of Eq. 3.12 around each of the fixed points in the system. Parameters: N = 121, a0 = 1.5 (weak
interaction), (A) K = 6 (monostable), (B) K = 14 (intersects bistable region).
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3.3. SENSITIVITY TO INITIAL CONDITIONS
One key question in complex systems research is how local perturbations spread to af-

fect the collective behavior of a system. In multicellular systems, one method of experi-

mentally applying localized perturbations is through shining light on engineered strains

of microorganisms to induce gene expression changes – these techniques were first ap-

plied to neurons and have given rise to the field of optogenetics [Deisseroth, 2013]. Con-

cretely, one can engineer cells with proteins that only get activated in sufficiently light

conditions and shine a localized beam of (laser) light onto single cells to activate gene

expression. In the social amoeba Dictyostelium discoideum, manipulating a single cell

can cause an entire population of starved cells to move towards that cell and aggregate

[Sgro, 2019]. From a theoretical point of view, sensitivity of initial conditions has been

widely studied in chaotic systems and is one of the hallmarks of chaos. For discrete-time

systems, various mathematical methods have been developed to formally analyze sen-

sitivity to initial conditions in cellular automata ([Wolfram, 1983; Wolfram, 1984; Urías

et al., 1997]) and coupled map lattices ([Kaneko, 1986]). These methods typically rely on

defining new measures and statistical quantities to quantify the effect of the perturba-

tion. We adapted one such metrics (the Hamming distance) and constructed new ones

to quantify both the strength of the perturbation and the response. In the following, we

first consider digital cells (Section 3.1), and then analogue cells (Section 3.2).

3.3.1. DISCRETE SYSTEM (INFINITE HILL COEFFICIENT )
Applying perturbations and quantifying their effects Given an initial configuration,

we generated configurations which are closely related to it by flipping the state of a small

number of cells. For instance, given a configuration X = {Xk }N
k=1, with Xk = 1 corre-

sponding to the ON state and Xk =−1 corresponding to the OFF state, choose a random

cell k ∈ {1,2, .., N } and flip it through the transformation Xk →−Xk (Fig. 3.9A). The tra-

jectories that follow from this operation typically closely follow each other (Fig. 3.9B),

but nevertheless show a variation in both trajectory shapes and endpoints. For instance,

there is a metastable state that terminates around p ≈ 0.6 in Fig. 3.9A while all other tra-

jectories terminate at p = 1. We examined how sensitive our system is to slight changes

in initial conditions using different ways of perturbing the system and measuring its ef-

fect. The impact of the perturbation was measured through the difference in equilibrium

states between the unperturbed and the perturbed trajectory. This difference can be

quantified through the Hamming distance introduced in Section 3.2.4 (Eq. 3.19). More

precisely, let Xeq be the final state of the unperturbed trajectory and Yeq be the final state
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of the perturbed trajectory. Then we quantified their difference through

dH (X ,Y ) =
N∑

k=1
|Xk −Yk |, (3.27)

Recall that biologically, this quantity sums up the differences in gene expression level of

all the individual cells.

Flipping single cells Using this metric, we examined how far apart the final states are

for two trajectories with close initial states. We first studied the effect of flipping single

cells across different phases of the system. Instead of varying many parameters, we fixed

most parameters at values corresponding corresponds to the activation-deactivation

phase, which shows behavior from all different qualitative phases found in the system

as one varies the initial fraction of ON cells. As seen from the pi n − pout map in Fig.

3.9(C), the system shows dynamics characteristic of all five phases (all OFF, deactivation,

autonomy, activation and all ON) as pi n is increased from 0 to 1. Therefore, we studied

this single example and extrapolated our results to other parameter sets not examined

here.

As expected, the system is most sensitive to changes in initial conditions in the ‘active’

phases (activation and deactivation), where it has many possible final states with dif-

ferent values of pout (Fig. 3.9D). In the other phases, the response is not responsive to

perturbations if these are sufficiently small. In the all ON/OFF regions flipping a sin-

gle cell has no effect, because it produces another configuration where all the cells turn

ON or OFF. In the autonomous region, any change to the system results in a new steady

state configuration, so if we change a single cell, the new equilibrium configuration will

differ from the old by only a single cell. However, in the activation and deactivation re-

gions, a small change can have a large effect. In particular, if we take a pi n value at which

some configurations partially turn ON/OFF whereas others completely turn ON/OFF,

then changing a single cell might provide the ‘kick’ necessary to fully activate or deac-

tivate the system. Hence a metastable state consisting of an island with a few ON cells

could turn OFF all these cells if we change just a single cell. The trajectories that show

this behavior are marked by the locations of the red dotted lines in (Fig. 3.9D). These

represent the maximum number of cells that can be turned OFF (red line) or ON (green

line) for any value of pi n . For deactivation, dH /N is bound by pi n +1/N , since no more

than pi n N +1 cells can turn off (the pi n N cells which are ON initially plus the cell that is

flipped). For activation, dH /N is bound by 1−pi n +1/N . The fact that there are trajecto-

ries intersecting with this line shows that full (de)activation due to changing a single cell

can indeed happen in the system, for a variety of initial conditions.
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Flipping multiple cells We next examined the effect of changing the state of multiple

cells of the initial state on the final configurations. To do this, we used the same ap-

proach as before and extended it to arbitrary number of cell flips. The average distance

between the flipped configuration and the original configuration is found to increase
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with the number of flipped cells, as expected. The increase saturates as the number of

cells increases (Fig. 3.9E), since dH /N ≤ 1 is a strict upper bound. In practice, the bound

is roughly max(pi n ,1−pi n) of the initial state of the perturbed system, since at best all

the ON (OFF) cells turn OFF (ON), but we never observed activation and deactivation

happening simultaneously in one trajectory. Furthermore, from the probability distribu-

tions in Fig. 3.9F we see two peaks for each of the different numbers of flipped cells. The

first one is where dH equals the number of flipped cells and corresponds to trajectories

where the perturbed and unperturbed configuration were both autonomous (i.e. their fi-

nal states are their initial states), so that their final states differ only by the cells that were

flipped. The second peak occurs at around dH ≈ 0.48N = pi n N and corresponds to cases

where one of one of the trajectories turns OFF completely while the other one remains

autonomous. For instance, the unperturbed configuration could be a steady state, while

perturbing this state leads to a configuration where all of the pi n N ON-cells turn OFF.

We concluded that perturbing cells in an active phase (deactivation in this case) tends

to be dominates by two extreme effects. Either the system is completely unresponsive

to the perturbation, leaving only the perturbed cells affected, or the perturbation causes

the system to escape the metastable state it was in, thereby traveling further down the

pseudo-energy landscape towards one of the global minima consisting of all cells ON or

OFF.

3.3.2. CONTINUOUS SYSTEM (FINITE HILL COEFFICIENT )
Let us now consider the case where cells have a continuous state and continuous re-

sponse functions as described in Section 3.2.1. Since we do not have binary cells which

are either ON or OFF, the method of flipping cell states cannot be applied to generate

Figure 3.9 (previous page): Perturbation response of a population of digital cells. (A) Schematic of the per-
turbation method. (B) Configurations that differ by a single cell are likely to end up in the same final states. Red
lines are trajectories starting from the circles and ending at the crosses. The background color indicates the
value of the pseudo-energy (see ...). N = 121, a0 = 1.5,K = 6,CON = 21, pi n = 0.2 (Activation phase, weak in-
teraction). (C-D) Effect of flipping a single cell for various initial pi ni . (C) Relation between the initial fraction
of ON-cells pi n and the final fraction of ON-cells pout . Results are for a system in the activation-deactivation
phase. The dotted red line shows the pi n value taken in plots (E) and (F) (see below). (D) The average dis-
tance between final configurations of trajectories as a single cell’s state is changed. We took the trajectories
that were used to generate (B). For each trajectory, we flipped the state of a one single cell and measured
the distance between the final configurations of the flipped and non-flipped states. The reported values are
averages over the N possibilities of choosing a single cell. Activation-deactivation phase (weak interaction).
N = 121, a0 = 0.5,K = 10,CON = 5. (E-F) Effect of flipping multiple cells. The initial configuration for all data
is N = 121, a0 = 0.5,K = 10,CON = 5, pi ni = 58/N ≈ 0.48 (the dotted red line shown in (C)). (E) Distance be-
tween final configurations plotted against number of cells of the initial configuration we flipped. Error bars are
standard errors of the mean. (F) Probability densities of the distance between final configurations for multiple
numbers of flipped cells. Each row shows P (dH /N ) (see color bar) for a given number of flipped cells. The
white regions have probability 0.
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perturbations to the system. In the continuous model, the range of possible perturba-

tions and responses is more complicated, and required us to define new ways to perturb

the system and analyze its effects.
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Figure 3.10: Perturbation response of a population of analogue cells. We work in the binary description
of the continuous cells (see text). All results are for N = 121, a0 = 5.4,K = 8,CON = 16, which corresponds
to the transition region between the synchronous and the autonomous phase. (A) Relation between the initial
fraction of ON-cells fi n and the final fraction of ON-cells fout , where ‘ON’ and ‘OFF’ are defined for continuous
cells according to Eq. 3.18 in Section 3.2.4. (B) Distance between perturbed and unperturbed trajectories.
The perturbation strength is set at α = 0.1. (C-D) Effect of perturbation strength on variability in the final
states of trajectories, for trajectories with fi n = 0.3. (C) Distance between final configurations plotted against
perturbation strength. Error bars are standard deviations from the set of different perturbed trajectories. (D)
Probability densities of the distance between final states for various levels of perturbation strength.

Generating initial states There are various ways to generate initial states for the con-

tinuous system, and these can lead to considerably different dynamics and steady states.

Because a homogeneous configuration (where all the cells have the same state) remains

homogeneous and corresponds to a one-dimensional system, we did not consider this

case here. Instead, we used a two-step algorithm to generate initial states with control-

lable properties outlined below.
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First, we fixed the initial fraction of cells fi ni which are ‘ON’ according to the binary de-

scription we constructed (Eq. 3.18 in Section 3.2.4). We initiated a random configuration

with N fi ni ‘ON’ cells and N (1− fi ni ) ‘OFF’ cells. This is analogous to the discrete system

with infinite Hill coefficient, except that the cells have gene expression levels at the lo-

cations of the stable fixed points XOF F and XON with 0 < XOF F < XON < 1, obtained by

solving the system for a single isolated cell. In the second step, we added variability to

the gene expression levels using a Monte Carlo algorithm that keeps fi n constant. We

selected random cells k, l , and generated a noise term δX ∼N (0,σ), with σ sufficiently

small. We then attempted to set Xk → Xk +δX and Xl → Xl −δX . If the resulting values

are such that ‘ON’ cells remain ‘ON’ and ‘OFF’ cells remain off (and if the values are in

[0,1]), then the move is accepted. Otherwise, the system does another trial with a new

δX . Note that this change keeps both the fraction of ‘ON’ cells fi n and the average gene

expression pi n constant. As the number of iterations is increased, the variance of the cell

states Var(Xi ) =
N∑

k=1
(Xk −〈Xk〉)2 plateaus, since the cells can only differ from each other

by a finite amount. In practice, we always worked with a high number of iterations in the

saturating regime.

Perturbation strength We defined a perturbation strength that measures how strongly

we altered the initial state of the system. We perturbed the initial state generated using

the same procedure as above, by adding random noise terms (which do not necessarily

preserve the mean expression level). For each cell, we tried to perturb its state by adding

a noise term δXk ∼ N (0,σper t ). Assume that the noise terms of different cells are uncor-

related. If Xk +δXk ∈ [0,1], the move is accepted and we set Xk → Xk +δXk . Otherwise,

the system tries a new δXk and repeats this until the move is accepted.

Using the same definition for dH , the initial distance between the perturbed and unper-

turbed states is then

dH (t = 0) =
N∑

k=1
|δXk |. (3.28)

The mean of this quantity, which is the average initial distance, is then

〈dH (t = 0)〉 =
N∑

k=1
〈|δXk |〉 = 2N

∫ ∞

0

xp
2πσper t

exp(− x2

2σper t
2 ) =

√
2

π
Nσper t

≈ Nσper t . (3.29)

On the other hand, the effect on the mean expression level averages out to zero on aver-

age. If we denote p0 as the mean expression of the unperturbed state and p1 as that of
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the perturbed state, we have

p1 −p0 =
N∑

k=1
δXk ,

〈
p1 −p0

〉= 0,
〈(

p1 −p0
)2

〉
=σper t

2. (3.30)

Thus, the initial mean expression level gets perturbed by the addition of a Gaussian noise

term with mean 0 and standard deviation σper t .

Dependence on initial fraction of ON cells We used the same distance function (Eq.

3.27) to measure distances between final states, applied to the output states of the per-

turbed and unperturbed final states in the binary description. Recall that the contin-

uous model has a strong interaction phase, in which all lattices become uniform over

time, and a weak interaction phase, in which each cell evolves according to its internal

dynamics. Both of these regimes, perturbations have a trivial effect. In the strong in-

teraction regime, the system homogenizes regardless of the initial state. Perturbations

could at best take the system from one homogeneous steady state to another. In the

weak interaction regime, the cells are autonomous and therefore such perturbations can

only have an effect on the level of individual cells and without inducing any collective re-

sponse. Therefore, only considered the transition phase between these two trivial phases

in more detail.

The example considered in Fig. 3.10 has features analogous to the activation phase for

binary cells. At very low fi n , the lattices becomes homogeneous at fout = 0, but as fi n is

increased, the values for fout > fi n . From about fi n = 0.5, the system practically always

reaches fout = 1. Hence, the interesting features are found in the region 0 < fi n < 0.5,

where we could expect small changes to have considerable effect. Indeed, we found that

a weak perturbation (α = 0.1) can cause a considerable effect, evident in the values of

dH taken around fi n = 0.1−0.2. However, we also observed that the probability of cause

such a large response is in fact very low and that most trajectories remain unaffected at

dH = 0.

Dependence on perturbation strength Analogous to flipping multiple cells in the bi-

nary model, we then adjusted the noise strength and examined the effect on the vari-

ability of final configurations (as measured by dH /N ). This tells us how the system re-

sponds as perturbation strength is increased. The Hamming distance between trajec-

tories dH /N increases with perturbation strength σper t and plateaus at high values of

σper t as expected. However, in this case we see that the distribution of dH /N is uni-

modal rather than bimodal. Small perturbations cannot cause a large response such as
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an event where the all the cells turn ON (because for this example we took fi n = 0.3, this

event would imply dH /N = 0.7, but the probability of observing this is zero except at the

highest values ofσper t we took). This lack of ‘catastrophic events’ could have more to do

with the way we set up the perturbation and chose the parameters of our system than

be due to some inherent property of the continuous system. For instance, changing all

cells slightly may result in different results from changing one cell by a large amount.

Also, in the phases of the binary system where the system shows a less varied collection

of output states for each input state (e.g. close to autonomy), we typically also expect

the perturbation response to be weak. Nevertheless, the key point here is that we still

observe that a small fraction of trajectories shows high sensitivity to initial conditions

as is evident from Fig. 3.10B, causing two initially similar configurations to diverge over

time to the maximal extent possible within the constraints of the system (as determined

by the fi n- fout maps).

3.3.3. DISCUSSION

In this section, we studied our system’s sensitivity to initial conditions by applying a sin-

gle perturbation to the initial state at t = 0 and analyzing its effects. For binary cells,

the response in the insulating phases (all ON/OFF, autonomy) is trivial, but in the active

phases (activation/deactivation) there are different possible outcomes. The pi n-pout

maps already show that the equilibrium pout value can differ considerably between tra-

jectories starting at the same value of pi n , which is a natural result of the fact that many

microstates have the same value of pi n . However, from this observation alone it was not

yet clear whether small changes can lead to these large differences in the final state. For

instance, if we observe for some value of pi n that some trajectories remain autonomous

whereas other completely turn off, can the trajectories that show each of these behaviors

differ by only a single cell? Or are the autonomous trajectories in some sense still clus-

tered, and would one need to apply a considerable perturbation involving many cells to

see a difference in final state? From our results, it is clear that the first scenario applies:

small changes can lead to drastically different behavior between closely related initial

states. This is the case for the binary system, where flipping the state of a single cell of a

steady state configuration can cause all cells to turn ON or to turn OFF. In the case of con-

tinuous cells, the effects are more subtle, but we also observe that small perturbations to

the initial state can lead to the large deviations between the perturbed and unperturbed

trajectories.

Our system’s sensitivity to initial conditions is shared with chaotic systems. However,

this condition alone is not sufficient to claim that a system is chaotic. We have not for-

mally established whether our system is chaotic or not; this requires proper mathemat-

ical definitions of e.g. the topology of our phase space. However, intuitively we would
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not directly expect the current system to be chaotic, as we have not observed many of

the other typical features of chaotic systems (e.g. period doubling, signs of strange at-

tractors, etc.).

3.4. USING MUTUAL INFORMATION TO CHARACTERIZE PATTERN

FORMATION

3.4.1. PREDICTING AND INFERRING INITIAL AND FINAL STATES

Our analysis so far has focused on the forward problem of determining the dynamics

and final state of simulation trajectories from a given parameter set and initial condi-

tions. However, one can also imagine situations in which the backward problem is inter-

esting: given a particular pattern, under what conditions could it have been formed? In

other words, how much information does the final pattern provide about how the sys-

tem started? The theoretical framework relevant for discussing and quantifying these

ideas is information theory. Traditionally, information theory has been applied to study

signal processing and communication, for instance to optimize the transfer of informa-

tion across a noisy channel or to optimally compress data [Shannon, 1948; Cover & Joy,

2006]. Information theory has also found applications in developmental biology, neu-

roscience and biochemical networks [Tkac̆ik & Walczak, 2011; Tostevin & Ten Wolde,

2009; Tostevin & Ten Wolde, 2010]. One well-studied example is pattern formation in the

early Drosophila embryo. Here, cells along the anterior-posterior axis acquire different

fates depending on concentrations of morphogen deposited by the mother at one end

of the embryo. The maternal morphogens regulate various downstream genes, which

in turn causes cells at different positions to develop differently. Information theory has

been applied to precise measurements of the morphogen level and expression of the

downstream genes to address the question of how precisely cells can tell their position

along the anterior-posterior axis [Tkacik & Walczak, 2011; Gregor et al, 2007b]. As such,

it directly tests Wolpert’s idea of positional information, which proposes that genetically

identical cells subject to different chemical environments (morphogen concentrations)

can acquire different fates responsible for pattern formation [Wolpert, 1971].

In this section, we discuss applying information theory to quantify how much infor-

mation the initial and final states of a multicellular system contain about each other.

However, note that our example does not directly involve signaling or communication

in natural settings. A multicellular system does not use its gene expression dynamics to

communicate information about what it will do in the future, neither to itself nor to an

external observer. Vice versa, it also does not try to inform any observer about its past

state through its present gene expression pattern. Hence the idea of a communication
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channel through which information is transmitted is irrelevant in our case. On the other

hand, one could imagine applications in biological computing making use of multicel-

lular systems to store and transmit information in more artificial settings [Amos, 2014;

Macia et al., 2016]. For such applications, our approach may provide useful results con-

cerning the information that can be encoded into a dynamically evolving multicellular

system that is to be retrieved later.

We start by introducing and define mutual information between input and output states.

We then discuss how mutual information is related to ‘entropy of population’, a quantity

defined in earlier work that quantifies the degree of autonomy of the system. We argue

that mutual information is relevant, due to the difficulty of directly inferring past states

from the rules of our system. Next, we extend the definition of mutual information to

our system with continuous cell states. Finally, we apply our framework to quantify the

effect of noise on the system.

Prediction and inference Let us first discuss the statistical concepts of prediction and

inference. Prediction here refers to our ability to forecast the final state of our system

from knowing only an initial state. Inference is the reverse process of finding initial states

corresponding to a given final pattern. We have seen that with fixed parameters, differ-

ent initial conditions can lead to very different final states, but this depends heavily on

the behavioral phase of the system. We have studied how different initial fractions of

ON-cells pi n relate to different final values of ON-cells pout by running many different

simulations across the range of possible pi n . Essentially, in this process we aimed to re-

construct the conditional probability distribution P (pout |pi n). However, once we know

this distribution, we can also answer the question of which initial conditions are most

likely for any given final configuration. Formally, this process of inference is described

by Bayes’ rule:

P
(
pi n

∣∣ pout
)= P

(
pout

∣∣ pi n
)

P (pi n)

P (pout )
. (3.31)

Thus, we see that prediction and inference are two sides of the same coin. By construct-

ing the pi n −pout maps, we have therefore acquired the data needed to infer initial state

from final states. However, our ability to infer the initial state depends on more than only

the data that we have. If each initial state leads to a unique final state (as is the case in the

autonomous phase), then we can infer the initial state with perfect certainty. However, if

all initial states lead to the same final state (as is the case in the all ON/OFF phases), then

we can infer nothing about the initial state from the final state. This leads to the question

of how to quantify our ability to learn about the past (the initial state of the system) from

the steady state that we observe at the end of a simulation.
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Mutual information between initial and final fraction of ON cells Using informa-

tion theory, we can quantify our ability to learn about one variable by studying another

through the concept of mutual information. The mutual information between the two

variables pi n and pout is defined as

I
(
pout , pi n

)= S
[
P

(
pout

)]−S
[
P

(
pout |pi n

)]
, (3.32)

where

S
[
P

(
p

)]=−∑
p

P
(
p

)
log2P (p) (3.33)

is the entropy of a probability distribution P (p). Hence the mutual information mea-

sures the reduction in entropy – or uncertainty – in the distribution of a variable given

knowledge about another variable. Mutual information is symmetric in its arguments,

I
(
pout , pi n

) = I
(
pi n , pout

)
and is measured in bits. An information content of n bits

means that there are roughly 2n distinguishable states in our system. For instance, an

input-output relation that is a step-function has 1 bit of information, as we can distin-

guish between a low output state and a high output state. Since the entropy or uncer-

tainty in a variable can only decrease by measuring another variable, we have S[P
(
pout |pi n

)
] ≤

S
[
P

(
pout

)]
and therefore I

(
pout , pi n

)≥ 0. The maximal value of I
(
pout , pi n

)
is reached

when the two variables are perfectly related through a one-to-one mapping. In that case,

P
(
pout |pi n

) = 0 and S
[
P

(
pout

)]
. For our system, since we treat all N +1 values for pi n

equal, the distribution of pout will be a uniform distribution, P (pout ) = 1/(N +1). There-

fore, the maximum value of I
(
pout , pi n

)
for our system equals log2(N +1).

Interpretation The interpretation of mutual information can be best illustrated by the

extreme examples of the ‘insulating’ phases (all ON/OFF and autonomy), in which the

dynamics of the system is trivial. In the all ON and all OFF phases, all initial config-

urations get mapped to the same final configuration. Therefore, by knowing the final

configuration we learn nothing additional about the initial configuration and vice versa.

We already knew that all the cells would turn ON or OFF and knowing the initial state of

the cells gives us no further information about the output. In this case, P
(
pout |pi n

) =
P

(
pout

)
and the mutual information equals zero. At the other extreme, in the autonomy

phase, there is a one-to-one relation between the input and output, namely pout = pi n .

In this case, knowing initial state tells us precisely what the final state is. Hence we go

from a state of complete ignorance about the output, in which case there are N+1 possi-

ble values for p, to having precise knowledge about the output state if we know the input

state. Our ignorance about the output decreases by N +1 bits by knowing the input and

the mutual information between input and output states equals log2(N +1). Thus, we
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can regard mutual information as a measure for autonomy in the system. The more au-

tonomous the system, the more each initial state corresponds to a unique final state, and

hence the higher the mutual information between initial and final state.

Relation to entropy of population Previous work defined a quantity called “entropy

of population”, which is a measure of the number of equilibrium states [Maire & Youk,

2015a]. More precisely, ifΩE is the number of equilibrium states, the entropy of popula-

tion is defined as S = logΩE . This quantity directly measures the number of microstates

of the system that are in equilibrium, and hence our ignorance of the equilibrium states

if we only know the parameters of our system (N , a0,K ,CON ). As such, it is also a measure

of the autonomy of the system. If the system is autonomous, there are many equilibrium

states and the uncertainty about the final state is high. Conversely, if the system acts

highly collectively, the final state becomes predictable and the entropy of population is

low. However, as we just discussed, mutual information has a similar interpretation in

terms of the degree of autonomy (vs collectiveness) of our multicellular system.

It thus becomes evident that mutual information and entropy of population are two re-

lated concepts. This can be made explicit by plotting both quantities for the various phe-

notypic phases of the system, controlled by K ,CON (Fig. 3.11A, C). As we already derived,

both quantities are minimal in the purely collective phases (all ON/OFF) and maximal in

the fully autonomous phase (autonomy). In the active phases (activation/deactivation)

between these extremes, both quantities are gradually modulated from one value to the

other. We can take the values of both quantities we computed at each value of K ,CON

and directly compare them. We then find a clear positive relation between them (Fig.

3.11D) — if the entropy of population increases, the mutual information also increases

and vice versa. This trend is not perfectly uniformly increasing, and this is most likely

due to the fact that both quantities are computed on a macrostate level, taking only into

account pi n and pout . In this process, some information about the microstates is lost.

If both mutual information and entropy of population can be regarded as quantitative

order parameters characterizing the degree of autonomy versus collectiveness in the sys-

tem, then when should we prefer one over the other? The key difference is that the

entropy of population weighs all equilibrium states equally, whereas the mutual infor-

mation does not. Suppose that there are only two possible equilibrium states. If one

equilibrium state is reached for half of the values of pi n and the other for half of the val-

ues, then the mutual information is 1 bit, since measuring pi n will give certainty over

which of the two values of pout is the output. However, if for each value of pi n , both

outcomes are equally likely, then measuring pi n gives no information about the output
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and the mutual information is 0 bits. The entropy of population for both cases is log(2).

This scenario does not occur in our system, since the distribution of the output pout is

never independent of pi n , except in the case of the all ON/OFF phases (in which case

both quantities yield zero). Thus, entropy of population is only a measure for the di-

versity of possible equilibrium states in the system, but does tell us anything about how

likely these states are reached under various conditions. Mutual information does take

this into account, but can give relatively low values if there are many equilibrium states

which can only be reached for a small range of pi n values, such is often the case in the

activation and deactivation regimes (see for instance panel 2 of Fig. 3.12B).

Reversing dynamics Why do we take a coarse-grained approach and build up an em-

pirical probability distributions such as P (pout |pi n) which can then be analyzed through

information theory and allow for Bayesian inference, in order to tell something about

the initial state of the system? It seems more intuitive to simply run simulations back-

ward in time to see how it started. This is unfortunately not possible in general, i.e. the

dynamics of cellular automata is usually reversible, because configurations are typically

not mapped one-to-one. Given a certain configuration {Xi }N
i=1, there could be many past

trajectories that lead to this microstate. Hence, from any configuration there might be an

arbitrary number of trajectories that lead to that state (limited only by the system size).

Conversely, there could be states that have no predecessor states; such states are called

Garden of Eden states. Finding these Garden of Eden states is highly non-trivial, and in

fact it cannot be decided whether such states exist for any type of cellular automaton

with dimension higher than one [Kari, 1994].

3.4.2. CONTINUOUS SYSTEM

Since mutual information is a measure for the degree of autonomy in the system, it

should be usable to distinguish between the collective synchronization and the autonomous

regimes in the system with finite Hill coefficient. Let us consider the mutual information

Figure 3.11 (preceding page): Mutual information between input and output states for a system of binary
cells depends on the regions of the phenotype diagram. (A) Mutual information between initial and final frac-
tion of ON cells across the various regions of the phenotype diagram, with fixed parameters N = 225, a0 = 1.5
(weak interaction). The corresponding value for the maximum value of I is log2(N + 1) ≈ 7.8202. (B) Exam-
ples of pi n −pout maps with different values for mutual information. Mutual information is minimal in the
all ON/OFF phase and maximal in the autonomy phase. The values of K ,CON for each of the four labeled
subfigures are indicated by the numbers on the plot in (A). (C) Entropy of population S = logΩE for the pa-
rameter range of K ,CON and same values of N , a0 as in (A). (D) Relation between mutual information and
entropy of population. Each point shows a point from the heat map in (A) corresponding to a set of values
(K ,CON ). Entropy of population is computed from a simulation that estimates probabilities that the system is
in equilibrium for given fraction of ON cells by trying random initial configurations.
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Figure 3.12: Mutual information as a function of the lattice spacing a0 for a system of continuous cells.
Parameters are fixed at N = 225,K = 8,CON = 16,n = 2,α = 0. (A) Mutual information against a0 shows the
transition from the collective phase (I = 0) to the autonomous phase I = Imax = log2 (N +1). The red line
indicates the value of Imax . (B) Examples of pi n − pout maps at different levels of noise. Results are for the
activation deactivation-phase with the same parameters as above.
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I ( fi n , fout ) between fractions of ‘ON’ cells in the binary description for n = 2, a choice

that we will motivate below. In the synchronization phase, all cells acquire the same fi-

nal state and fout = 0 or fout = 1, and therefore the mutual information I = 0. In the

autonomy phase, each cell remains within it’s basin of attraction, so the fi n = fout and

the mutual information is maximal at I = log2 (N +1). In between these regimes, it takes

intermediate values in these extremes. Therefore, by knowing the value of the mutual

information only, we can determine whether the system is in the collective synchroniza-

tion phase, the autonomy phase or the transition phase in between.

In fact, the mutual information appears to increase monotonically from zero to its max-

imum value as a0 is increased in this transition regime (Fig. 3.12(A)). This is reflected by

the fact that the input fi n and output fout get closer and closer together as a0 is increased

(Fig. 3.12(B)). At the onset of the transition region, there is still a wide range of fi n val-

ues for which the system always synchronizes at fout = 1 (a0 = 5.2 panel in Fig. 3.12(B)).

However, at the end of the transition region, close to the autonomous regime, the sys-

tem is already highly autonomous, with only at most a few cells changing their state

(a0 = 10 panel in Fig. 3.12(B)). Not only the mutual information, but also the fi n − fout

maps appear to change smoothly as a0 is increased. Altogether, this implies that mutual

information between input and output states could be interpreted as another order pa-

rameter characterizing the transition between the collective synchronization phase and

the autonomy phase.

Binary description There are several technical reasons why we work in the binary de-

scription of the system, with fi n and fout instead of the mean expression levels pi n and

pout , although we obtain qualitatively similar trends with the latter choice (not shown).

Firstly, we have seen that in equilibrium, the cells are clustered tightly around two equi-

librium values which we identified as ‘OFF’ and ‘ON’, thus making an effective binary

description feasible. In the initial state, we initiate cells at these two equilibria and ap-

ply the randomization algorithm described in Section 3.3.2. This randomization process

will cause a spread in the cell states, so the cells may not start close to these fixed points.

Nevertheless, by comparing the fi n− fout maps to those obtained from initial states with

Xk = 0 or Xk = 1 for all cells, we find no distinguishable difference between these maps

(not shown) and therefore it seems that the output fout is mostly determined by the value

of fi n only. However, the same cannot be said if we work with pi n-pout . In contrast,

it appears that fixing pi n with different procedures leads to highly different pi n − pout

maps. This is intuitive as can be illustrated by an example. Suppose we initiate all cells

in the same state Xk = pi n at one of the fixed points. In the autonomous phase, all cells

would remain there and pout = pi n . However, if we instead split the cells into a group
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of cells with Xk = 0 and another group with Xk = 1, such that on average they still have

the same value of pi n , then we would get a very different result. The cells in the other

basin of attraction would equilibrate at the other fixed point and the system would have

a different value for pout . Thirdly, working with continuous gene expression would in

theory require working with continuous probability distributions to calculate the mu-

tual information. In practice, however, we can only build up these distributions from

discrete data, and therefore this would require us to discretize our probability distribu-

tions. However, the discretization scheme we choose has an influence on the value of

the mutual information we find. Given a discretization with Nb bins, the mutual infor-

mation is bound by the maximal value log2(Nb). of course, a natural choice would be to

take Nb = N +1 bins, with edges at pN = [0, 1
2 , 3

2 , . . . N − 1
2 , N ]. This roughly corresponds

to a ‘resolution limit’ of or ability to distinguish a single cell that is either completely ON

or completely OFF.

3.4.3. APPLICATION: ENSEMBLE-LEVEL RESPONSES TO STOCHASTIC NOISE

In this last part, we consider an application of the above framework to study the effect

of stochastic noise on ensemble-level features of the system, in particular it’s pi n −pout

maps. In Chapter 4, we will see that noise is capable of ‘liberating’ metastable states and

drive them further down the pseudo-energy landscape. We also propose that this could

lead to trajectories with higher levels of spatial organization, because of the inherent ten-

dency of trajectories to acquire higher levels of the spatial index I as they evolve in time.

However, these findings have been discussed only at the level of individual trajectories,

and a ensemble-level discussion remains lacking. Here, we will consider sets of simu-

lations at different values of initial pi n or fi n and look at how noise affects their output

state.

Binary system We first considered the binary system and study it’s ensemble-level re-

sponses by constructing pi n − pout maps through performing many simulations. The

addition of noise is most interesting in the active phases of the system (activation, deac-

tivation and activation-deactivation), as we expect to see higher levels of (de)activation

as noise level is increased. Indeed, if the system is in (de)activation phase, adding mod-

erate noise will only tend to drive the system towards more (de)activation and not cause

any cells to deactivate (activate). However, one effect that follows from this is that the set

of metastable states, where the system does not fully (de)activate and tends to end up

in configurations of high spatial organization, tends to get reduced as noise is increased.

Both the range of pi n values for which metastable states are possible and the extend of

possible pout values for these metastable states are decreased. This process is illustrated

for the activation-deactivation phase in Fig. 3.13(B). Whereas for low noise the system
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Figure 3.13: Influence of noise on mutual information between input and output states, for a system of
binary cells. We fixed N = 225. (A) Mutual information against noise for three different behavioral phases
of the model. Red corresponds to the deactivation phase (a0 = 1.5,K = 8,CON = 15), blue to the activation-
deactivation phase (a0 = 0.5,K = 15,CON = 8) and green to the activation phase (a0 = 1.5,K = 20,CON =
15). Note that for activation and deactivation, I → 0 as there is only one final state (all ON/OFF), whereas for
activation-deactivation I → 1 bit as there are two stable states which could only potentially mix at extremely
high values of noise. (B) Examples of pi n −pout maps in the activation-deactivation phase at different values
of the noise strength.
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can still end up in some metastable states if pi n ≈ 0.5, at higher levels the response be-

comes binary: either all cells turn OFF (if pi n < 0.5) or all cells turn ON (if pi n > 0.5).

Correspondingly, the mutual information between pi n and pout decreases uniformly for

all three studied phases as noise strength is increased (Fig. 3.13(A)). In the activation and

deactivation phases, I (pi n , pout ) goes to zero, as all trajectories get driven to the single

global minimum. In the activation-deactivation phase, noise drives the system to ei-

ther pout = 0 or pout = 1 depending on the initial state. Knowing pi n then allows one to

distinguish between these two cases, so I (pi n , pout ) → 1.

Continuous system In the continuous system, we observed a similar phenomenon of

noise leading to more uniform end states and thereby decreasing mutual information.

We considered the system with parameters in the transition regime, close to the au-

tonomous phase, such that without noise a variety of final states are possible. With the

addition of noise, the system is driven towards the higher fixed point, as is evident from

the fi n − fout maps in Fig. 3.14A. Why does it seem that noise biases the cells towards

the higher fixed point (since fout > fi n)? This has to do with the fact that location of the

unstable fixed point, however, is typically not precisely in the middle between the two

stable fixed points (found by solving Eq. 3.16). In particular, for our set of parameters the

basin of attraction of the lower fixed point is much smaller than that of the higher fixed

point. As a result, noise from one of the fixed points is more likely to push the system

over to the other fixed point than vice versa. Therefore, at relatively high levels of noise,

all trajectories go to a fout = 1 final state and mutual information goes to zero (α= 10−0.3

panel in Fig. 3.14B). As noise is further increased, however, some transitions back to the

low fixed point are possible and the system tends to stabilize in a dynamic steady state

with fout values close to but less than 1 (α= 100.5 panel in Fig. 3.14B). This corresponds

to the slight increase in I ( fi n , fout ) in Fig. 3.14A. Given these results together, we deduce

that there are three regimes upon increasing noise in the system. Note that this is a phe-

nomenological description and that the boundaries between the regimes are not strictly

defined.

1. In the first regime, noise has limited effect on the expression level of individual

cells and hardly causes any cells to switch state. Noise has the effect to cause fluc-

tuations in the states of individual cells, but none of these fluctuations lead to large

effects that spread across the entire system.

2. In the second regime, noise can induce only one-sided transitions from the state

closest to the unstable fixed point. In our example above, cells can easily turn

from OFF to ON, but not the other way around. This causes the system to become

completely homogeneous over time, as all tells are pushed towards the fixed point
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with the larger basin of attraction.

3. In the third regime, noise can induce both transitions from the low to the high

expression level fixed point, and vice versa. Because of the high level of noise,

the final steady is a dynamical steady state where the gene expression levels still

fluctuate over time, but on average tends to be within a given range of fout values.

Altogether, these results show that adding noise to system with continuous response

functions leads to more uniformity in the final pattern that form. This is in contrast

to the discrete model, for which moderate noise can lead to more ordered final states, as

will be discussed in Chapter 4 (for one molecule) and Chapter 5 (for two molecules).

3.4.4. DISCUSSION

In this section, we characterized input-output relations between the initial and final

states of the system through the information-theoretic concept of mutual information.

We have shown how mutual information relates to the degree of autonomy in the system.

It’s value is low when different initial configurations give rise to the same final configu-

ration, and high when they lead to unique final states. As such, mutual information is

related to the ‘entropy of population’ defined in earlier work [Maire & Youk, 2015a], as we

have also shown numerically. However, the main advantage of using mutual information

over ‘entropy of population’ is that it takes into account the fact that not all equilibrium

states occur with equal probability.

From an information perspective, mutual information expresses the number of bits of

information that can be learned about one variable by measuring the other remains

true. As such, it is strongly related to the notion of correlation as measured by well-

established correlation coefficients. However, whereas correlation typically refers to lin-

ear dependencies between variables, mutual information represents a fully nonpara-

metric method of assessing potentially nonlinear relationships between variables. As

such, the results we obtained cannot have been obtained by substituting mutual infor-

mation by correlation coefficient.
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Figure 3.14: Mutual information as a function of the noise strength α for a system of continuous cells. Pa-
rameters are fixed at N = 225,K = 8,CON = 16,n = 2, a0 = 6. Note that without noise, this system would lie
in the autonomous phase. (A) Mutual information against noise strength shows three different regimes. First,
mutual information decreases with noise as the system is driven towards homogeneous final states. There is a
plateau at I = 0 for intermediate noise levels, corresponding to the situation where all cells turn ON over time
due to noise. Finally, at high noise levels the ON cells are no longer stable and stochastically transition to OFF
states. (B) Examples of pi n −pout maps at different values of the noise strength show these regimes explicitly.



4
STATISTICAL DYNAMICS OF

SPATIAL-ORDER FORMATION BY

COMMUNICATING CELLS

Communicating cells can coordinate their gene expressions to form spatial patterns, gen-

erating order from disorder. Ubiquitous “secrete-and-sense cells” secrete and sense the

same molecule to do so. Here we present a modeling framework — based on cellular

automata and mimicking approaches of statistical mechanics — for understanding how

secrete-and-sense cells with bistable gene expression, from disordered beginnings, can be-

come spatially ordered by communicating through rapidly diffusing molecules. Classify-

ing lattices of cells by two “macrostate” variables — “spatial index”, measuring degree of

order, and average gene expression level — reveals a conceptual picture: a group of cells

behaves as a single particle, in an abstract space, that rolls down on an adhesive “pseudo-

energy landscape” whose shape is determined by cell-cell communication and an intra-

cellular gene-regulatory circuit. Particles rolling down the landscape represent cells be-

coming more spatially ordered. We show how to extend this framework to more complex

forms of cellular communication.

An adapted version of this chapter has been published as E.P. Olimpio*, Y. Dang* and H. Youk, “Statistical
dynamics of spatial-order formation by communicating cells”, iScience 2, 27-40 (2018)
Some results from this chapter have also appeared in the master thesis of E.P. Olimpio [Olimpio, 2016].
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4.1. INTRODUCTION
Cells can communicate by secreting signaling molecules and this often underlies their

collective behaviors. A striking example is that of initially uncoordinated cells, through

cell-cell communication, coordinating their gene expressions to generate spatial pat-

terns or structures [Gregor et al., 2010; Sawai et al., 2005; Danino et al., 2010; Liu et

al., 2011]. Many cells partly or completely control such “disorder-to-order” dynamics

by simultaneously secreting and sensing the same signaling molecule [Doğaner et al,

2016; Youk & Lim, 2014a]. These “secrete-and-sense cells” appear across diverse organ-

isms and include quorum-sensing social amoeba, Dictyostelium discoideum, that form

fruiting bodies [Gregor et al., 2010; Sawai et al., 2005; Sgro et al., 2015] and autocrine-

signaling T-cells [Antebi et al., 2013; Sporn & Todaro, 1980; Youk & Lim, 2014b]. Based

on mounting evidence from studies of various organisms [Gregor et al., 2010; Danino, et

al., 2010; Youk & Lim, 2014a; Antebi et al., 2013; Mehta et al., 2009; Kamino et al., 2017;

Hart et al., 2014; De Monte et al., 2007; Umeda and Inouye, 2004; You et al., 2004; Pai

et al., 2012; Coppey et al., 2007; Shvartsman et al., 2001], researchers now suspect that

secrete-and-sense cells, many of which are governed by the same type of genetic-circuit

[Doğaner et al., 2016], are highly suited for spatially coordinating their gene expressions.

But if true, exactly why this is so, whether there are common design principles shared by

the different organisms, what the dynamics underlying their disorder-to-order transition

is, and how to even quantify their spatial order, remain open questions. In this chapter,

we address these questions in the context of initially disordered fields of secrete-and-

sense cells that self-organize into spatially ordered fields without any pre-existing mor-

phogens. Specifically, we develop a theoretical framework that takes a simple and ubiq-

uitous class of secrete-and-sense cells, sensibly defines and quantifies the notion of the

cells’ spatial order, and then elucidates how the spatial order evolves over time. We focus

here on analytically describing how spatial correlations among cells’ gene-expression

levels dynamically emerge rather than on describing the shapes, sizes, and formations

of specific spatial patterns (e.g., stripes). To study how these cells generate specific pat-

terns, one often uses exhaustive numerical simulations that are adapted to particular

settings [Cotterell & Sharpe, 2010; Cotterell et al., 2015; Chen et al., 2015]. While such

simulations provide insights into the dynamics of spatial-order formation, a different

modeling framework may provide complementary insights that are difficult to extract

from the often-large numbers of parameters involved in numerical simulations.

Our main idea is that describing hundreds to thousands of secrete-and-sense cells form-

ing a particular spatial configuration is infeasible without exhaustive numerical simula-

tions but that it is possible to analytically describe how an ensemble of “similar” spatial

configurations evolves over time without knowing the state of every single cell. As we
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will show, we do this by defining quantities that are similar to those found in statistical

physics but have meanings and properties that are very different and are adapted for de-

scribing cells. Specifically, we will define a “spatial index” — a number whose magnitude

is between zero (complete disorder) and one (complete order). Inspired by approaches

of statistical mechanics, we will group all lattices of cells that have the same spatial or-

der parameter and average gene-expression level into an ensemble that we will call a

“macrostate”. Surprisingly, we find that this macrostate moves like a particle that drifts-

and-diffuses in an abstract, two-dimensional space that we will call a “phase space” —

since it describes all possible spatial configurations of the lattice — and whose coor-

dinates denote the cells’ spatial order and average gene-expression level. We find that

the particle, representing an entire cellular lattice, moves in the phase space by rolling

down on a “pseudo-energy landscape”, which is a visual landscape that is shaped by the

communication among the cells and the intracellular gene-regulatory circuit that con-

trols how the cells secrete and sense the molecule. We will show that the shape of this

landscape is quantitatively defined by a function that we will call a “pseudo-energy” and

show that while it mathematically resembles the Hamiltonian of the Ising model, it has

different properties. We will show that the gradient of the pseudo-energy and a “trap-

ping probability”, which quantifies an adhesiveness of the pseudo-energy landscape, to-

gether determine the particle’s trajectories in the phase space — the particle rolls down

along the negative of the gradient of the pseudo-energy and at locations where the land-

scape is highly adhesive, it halts. Crucially, we will show that these trapping locations on

the pseudo-energy landscape — the locations where the particle halts — correspond to

highly ordered spatial configurations such as islands of cells that have the same gene-

expression level. A moderate amount of noise can induce the particle to roll down fur-

ther on the pseudo-energy landscape and this corresponds to the cells forming patterns

with even higher spatial organizations. We thus provide an intuitive and visual picture,

based on experimentally attainable quantities, that is both practical and conceptual for

elucidating how a simple class of secrete-and-sense cells spatially coordinate their gene

expressions.

4.2. RESULTS

4.2.1. CELLULAR AUTOMATON SIMULATES SECRETE-AND-SENSE CELLS THAT

SLOWLY RESPOND TO A RAPIDLY DIFFUSING SIGNALING MOLECULE.
We used a cellular automaton [Ermentrout & Edelstein-Keshet, 1993] to simulate secrete-

and-sense cells. We will compare the results of the cellular automaton with our the-

ory’s predictions. We considered a two-dimensional, triangular lattice of N spherical,

immobile secrete-and-sense cells of radius R and a lattice spacing a0. As a proof-of-
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principle, we considered “simple” secrete-and-sense cells which we define to be cells

that (1) very slowly respond to their fast diffusing signal, and (2) whose gene-expression

level, which is determined by the extracellular concentration of the signal and signal-

secretion rate, exhibit switch-like (digital) bistability (see Chapter 3.1). These two fea-

tures were motivated by experimentally characterized secrete-and-sense cells. Examples

include yeasts that secrete-and-sense a mating pheromone in a nearly digital manner

(diffusion timescale ∼1 second; response timescale ∼30 minutes) [Youk & Lim, 2014a;

Rappaport & Barkai, 2012] and mouse hair follicles, which are secrete-and-sense organs

that act as digital secrete-and-sense cells on a triangular lattice (diffusion timescale ∼12

hours; response timescale ∼1.5 days) [Chen et al., 2015; Maire & Youk, 2015b] (see also

Table S4.1). Each cell’s gene expression is either “ON” (when its signal-secretion rate is

at a maximum) or “OFF” (when its signal-secretion rate is at a minimum, basal level).

Each cell senses a steady-state signal-concentration c on itself. If c is higher (lower) than

a threshold concentration K , which we call an “activation threshold”, then the cell is ON

(OFF). We set COF F = 1 so that we express all concentrations as multiples of COF F . Our

cellular automaton computes the concentration on every cell, then synchronously up-

dates each cell’s state, and then repeats this process until the cellular lattice reaches a

steady-state configuration in which no cell’s state requires an update. By running the

cellular automaton on randomly distributed ON- and OFF-cells, we observed that ini-

tially disordered lattices could indeed evolve into spatially ordered steady-state configu-

rations such as islands of ON-cells (Figure 4.1A).

4.2.2. SECRETE-AND-SENSE CELLS CAN BE CLASSIFIED INTO DISTINCT BE-

HAVIORAL PHASES.
To reveal how the disorder-to-order dynamics arises, we will analyze the cellular au-

tomaton in each of the cells’ “behavioral phases” that we described in a previous work

(Figure 4.1B) [Maire & Youk, 2015a]. As the previous work showed, the behavioral phases

represent how one cell turns on/off another cell. They arise from self-communication

(i.e., a cell captures its own signal) competing with neighbor-communication (i.e., a cell

captures the other cells’ signal). The communication between two cells, cell-i and cell-

j, is quantified by an “interaction term” for that pair, f (ri j ) ≡ e(R−ri j )/ri j sinh(R) (where

ri j is the distance between the centers of cell-i and cell-j and R is both cells’ radius).

This term is directly proportional to the concentration of the signaling molecule on cell-

i that is due to cell-j, and vice-versa. We then quantify the competition between the

self- and neighbor-communication among the N cells with the “interaction strength”,

fN (a0) ≡ ∑
i , j e(R−ri j )/ri j sinh(R), which is the sum of the interaction terms of all cell-

pairs. It is a function only of the cells’ radius R and the lattice spacing a0. The latter is
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because all distances between the cells are determined by specifying the lattice spacing.

The interaction strength fN (a0) measures how much each cell captures the signals from

all the other cells (see Eq. 3.5) [Maire & Youk, 2015a]. For a given interaction strength,

the activation threshold K and the CON determine the cells’ behavioral phase. The val-

ues of K , CON , and fN are held fixed and thus the cells’ behavioral phase also remains

unchanged over time. We categorize a behavioral phase as either an “insulating phase”

— in which no cell can turn on/off the other cells due to dominant self-communication

— or a “conducting phase” — in which cells can turn on/off the others due to dominant

neighbor-communication (Figure 4.1B). Regardless of the interaction strength, cells can

operate in two conducting phases: (1) “activate phase” — in which neighboring ON-cells

can turn on an OFF-cell, and (2) “deactivate phase” — in which neighboring OFF-cells

can turn off an ON-cell. Additionally, when the interaction is weak (i.e., fN (a0) < 1), cells

can operate in an “autonomy phase”, which is an insulating phase whereby a cell can stay

ON/OFF regardless of the other cells’ states. On the other hand, when the interaction is

strong (i.e., fN (a0) > 1), cells can operate in an “activate-deactivate phase”, which is a

conducting phase whereby the cells can both activate and deactivate the others depend-

ing on their relative locations.

4.2.3. GROUPING MULTIPLE SPATIAL CONFIGURATIONS INTO ONE MACROSTATE

BASED ON THEIR COMMON SPATIAL INDEX I AND FRACTION p OF

CELLS THAT ARE ON.
We now present our framework’s central ingredient. Let us define two “macrostate” vari-

ables: (1) the fraction p of cells that are ON (equivalent to the average gene-expression

level) and (2) a “spatial index” I that we define as

I = N∑
i
∑

j 6=i f
(
ri j

) ∑
i
∑

j 6=i f
(
ri j

)
(Xi −〈X 〉)(X j −〈X 〉)∑

i (Xi −〈X 〉)2 (4.1)

where Xi is +1(−1) for an ON (OFF)-cell and 〈X 〉 = ∑
i Xi /N is the average over all the

cells. The spatial index I , in fact, belongs to a widely-used class of statistical metrics

called Moran’s I [Moran, 1950]. Moran’s I is frequently used for spatial analysis in diverse

fields, including geographical analysis [Getis & Ord, 1992], ecology [Legendre, 1993] and

econometrics [Anselin, 2008]. Our spatial index I measures a spatial autocorrelation

among the cells by weighing each cell-pair by that pair’s interaction term f (ri j ) [Maire &

Youk, 2015a]. Thus, roughly speaking, the spatial index measures the average correlation

between the states of any two cells by assigning a higher weight to those cell-pairs that

communicate more with each other (and hence are closer to each other in space). By

construction, −1 ≤ I ≤ 1 and 0 ≤ p ≤ 1. When I = 0, ON- and OFF-cells are randomly
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distributed across the lattice, yielding maximally disordered lattices (Figure 4.2A – top

row). When |I | is large, the cells are more spatially ordered and the lattice consists of

large contiguous clusters of ON/OFF-cells (Figure 4.2A – bottom row). For I > 0, cells

of the same ON/OFF-state tend to cluster together, whereas for I < 0, cells of the same

ON/OFF-state tend to avoid each other. As we will see below, we can focus on lattices

with a positive spatial index for our purpose. For positive values of I , a key feature that

the value of the spatial index tells us is whether the lattice consists of one large, con-

tiguous island of ON/OFF-cells (when I is close to one; Figure 4.2A – bottom row) or of

many fragmented small islands of ON/OFF-cells (when I is close to zero; Figure 4.2A –

top row).

Our central idea is to group cellular lattices that have the same (p, I ) into a single ensem-

ble (examples in Figure 4.2A). We then view this ensemble as a particle that moves in an

abstract space whose position at time t is (p(t ), I (t )). We call this abstract space a “phase

space” because each point (p, I ) in this space represents an ensemble of all possible spa-

tial configurations that have the same value of p and the same value of I . The number of

microstates that share the same macrostate can then be computed using methods based

on those used to calculate the density of states in statistical physics (Section S4.5.3). The

procedure of grouping spatial configurations based on their (p, I ) is akin to a situation in

physics in which many microstates (e.g., the positions and momenta of all particles) are

grouped into a single macrostate (e.g., pressure or temperature). Thus, we will call each

lattice configuration a “microstate” and the ensemble of these microstates represented

by a given (p, I ) to be a “macrostate” (Figure 4.2A).

4.2.4. CELLULAR LATTICE IS REPRESENTED BY A PARTICLE WHOSE POSI-

TION (p, I ) AND TRAJECTORY DEPENDS ON THE BEHAVIORAL PHASE.
By randomly choosing thousands of microstates that all belong to the same disordered

macrostate (p = pinitial, I ≈ 0) and then running the cellular automaton on each of these

microstates, we observed how the lattices evolved out of disorder. Specifically, we ob-

tained a distribution of their trajectories, and thus also a distribution of their final po-

sitions (p = pfinal, I = Ifinal), for every value of pinitial in each behavioral phase (Figure

4.2B). The fact that we obtained, for a fixed value of pinitial, a distribution of values for

pfinal (Figure 4.2B – top row) and a distribution of trajectories (Figure 4.2B – bottom row)

instead of a single trajectory, indicate that the particle moves stochastically in the p-I

space. This stochasticity arises from the cellular automaton operating on individual cell’s

state Xk , a microstate variable, at each time step rather than operating on the macrostate

variables, p and I . And since, at the macrostate-level, we are ignorant of the exact mi-

crostate that the cellular automaton is operating on, the macrostate-level description of
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column): Different colors denote distinct behavioral phases. See also Table S4.1.

the particle’s motion, once we deduce it, would have to be a stochastic description.

We found several promising signs that an analytical, macrostate-level description is pos-

sible. Firstly, we observed that particles that started at the same position (pinitial,0), for

the most part, remained close to each other in subsequent times, leading to tightly bun-

dled trajectories in the p-I space despite the stochasticity (Figure 4.2B – bottom row).

Furthermore, we observed other features that were shared by all the trajectories for each

behavioral phase. Specifically, in the activate phase, we observed that if the pinitial was

above a certain threshold value (red vertical line in Figure 4.2B – top left panel), then

almost all cells were turned on whereas if it was below the threshold value, then the ac-

tivation was minimal due to the cellular automaton not starting with enough ON-cells.

In the deactivate phase, we observed that if the pinitial was below a certain threshold

value (red vertical line in Figure 4.2B – top middle panel), then almost all cells turned

off whereas if it was above the threshold, then the deactivation of ON-cells was mini-

mal due to the cellular automaton not starting with enough OFF-cells. Finally, in the

activate-deactivate phase, we observed a threshold value for activation (green vertical

line in Figure 4.2B – top right panel) and a threshold value for deactivation (red vertical

line in Figure 4.2B – top right panel). Between these two thresholds, a particle stops with

a value of p that is either only slightly higher (activation) or slightly lower (deactivation)
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than the value that it started with (giving rise to a slanted “bowtie” shape in Figure 4.2B

– top right panel).

We also observed common features in the shapes of the trajectories themselves in the p-

I space. Specifically, we observed that in every trajectory, the I initially increased before

plateauing at some value while the p either monotonically increased or decreased over

time (Figure 4.2B – bottom row). Then, one of two events occurred in all trajectories: ei-

ther (A) the particle stopped, and thus the cellular automaton terminated, with the final

value of p (i.e., pfinal) between zero and one (see black dots that mark the trajectories’

endpoints in Figure 4.2B – bottom row) or (B) the particle kept increasing or decreasing

its p until it reached and stopped at either p = 1 (all cells ON) or p = 0 (all cells OFF)

and as it did so, its spatial index abruptly dropped to zero (e.g., most of the red trajecto-

ries in Figure 4.2B). Observation (A) corresponds to a situation in which the cells form

an ordered spatial configuration that, being a steady state of the cellular automaton, re-

mains unchanged indefinitely. This situation arose most notably but not exclusively in

the activate-deactivate phase. Observation (B) corresponds to a situation in which all

cells either turn on or off.

To explain observation (B), we first rewrite Equation 4.1 as (Supplemental Information

section S4.5.1)

I (p) = (Θ− (2p −1)2 fN (a0)

4p(1−p) fN (a0)
, (4.2)

where Θ = 1
N

∑
i , j 6=i f (ri j )Xi X j . Note that the p and the spatial index I depend on each

other. And since Equation 4.2 enables us to deduce Θ if we know I and vice versa, we

have the option of considering (p,Θ) to be a macrostate instead of (p, I ). The main dis-

advantage of this is that the Θ, unlike the spatial index, it is not normalized. This makes

it difficult to compare the values ofΘ for lattices with different values of p. Thus, we will

work with (p, I ) instead of (p,Θ). From a mean-field approximation, in which we calcu-

late the average amount of signal sensed by each cell (Supplemental Information section

S4.5.2), we deduced that the particle’s spatial index has an upper bound for each value

of p. We denote this p-dependent maximal value of I by a function Imax(p) (dashed

black curves in Figure 4.3). The function Imax(p) sharply drops to zero as p nears zero

or one. Accordingly, as the particle’s p nears zero or one, its spatial index should sharply

decrease to zero in accordance with observation (B) (Figure 4.3B-D). This makes sense

because the spatial index is a measure of whether or not the lattice consists of a large,

contiguous island of ON/OFF-cells. As the spatial index approaches zero, the lattice be-

comes populated with more fragments of smaller islands of ON/OFF-cells. When the

p is near zero (one), as is the case when only one cell is ON (OFF), then no clusters of

ON-cells (OFF-cells) are possible since there is only one ON-cell (OFF-cell). Due to this

reason and from a rigorous calculation of how the I changes as the p approaches zero or
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one (Supplemental Information section S4.5.1), we find that the spatial index is indeed

zero when the p is either zero or one. To fully explain the particle trajectories along with

observations (A) and (B), we next sought an equation of motion for the particles.
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4.2.5. CELLULAR LATTICE ACTS AS A PARTICLE THAT ROLLS DOWN ON AND

ADHERES TO A PSEUDO-ENERGY LANDSCAPE

We conjectured that if a cellular lattice indeed moves like a particle, then there may

be a “landscape” on which the particle rolls down. To explore this idea, we consider a

function h that we call a “pseudo-energy” and define it as h ≡ −∑
i Xi (Yi −K ), where

Yi is the signal concentration on cell-i. In fact, we can rewrite h entirely in terms of the

macrostate variables, p and I (Supplemental Information section S4.5.4). Plotting h(p, I )

yields a three-dimensional landscape that we call a “pseudo-energy landscape” (Figure

4.3A). Its shape depends on the cells’ behavioral phase (Figures 4.3B–D). Importantly, by

plotting the trajectories on top of their respective landscapes, we observed that every

particle’s pseudo-energy (i.e., value of h) monotonically decreased over time until the

particle stopped. We could also rigorously prove this (Supplemental Information sec-

tion S4.5.4). The fact that the pseudo-energy is a decreasing function of the spatial index

explains why trajectories in general tend towards increasing values of the spatial index

(Figures 4.3B–D).

To see, at the microstate-level, why the cells’ states become more spatially correlated

over time, we rewrite the h as

h =−α ∑
i , j 6=i

f (ri j )Xi X j −B
∑

i
Xi −Nα (4.3)

where α≡ (CON −1)/(2N ) and B is a “signal field” defined as α(1+ fN (a0))−K /N . Equa-

tion 4.3 is strikingly similar to the Hamiltonians of the Hopfield network [Hopfield, 1982]

and magnetic spins with long-range interactions [Kirkpatrick & Sherrington, 1975; Tch-

ernyshyov & Chern, 2011]. Note that since α f (ri j ) > 0 and the particle’s pseudo-energy

keeps decreasing over time before the particle stops, the cells must “align” their states

with each other rather than “anti-align” (i.e., the pseudo-energy favors the pairing of two

ON-cells rather than pairing of an ON-cell with an OFF-cell). In magnetic spin systems,

this would be analogous to a ferromagnetic interaction. As in physical systems, we can

view the signal field B as a macroscopic knob that we can tune to change the shape of the

pseudo-energy landscape for a given cellular lattice. From the phase diagrams (Figure

4.1B), we can deduce that B > 0 in the activate phase, that B < 0 in the deactivate phase,

and that B can be positive, negative, or zero in the activate-deactivate phase (depending

on K and CON ).

Intuitively, increasing the value of Θ, and thus the value of I (by Equation 4.2), corre-

sponds to larger clusters of ON-cells and OFF-cells forming, which would in turn de-

crease the pseudo-energy since the first term in Equation 4.3 equals −αNΘ. Despite

these similarities, we emphasize that the cellular lattice is not the same as an Ising spin
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system. For one, there is no real Hamiltonian in our framework that, for instance, gives

rise to a Boltzmann distribution. Importantly, we have not used any quantities from

physics in our framework, despite some similar properties shared by the framework pre-

sented here and those of statistical physics. In the discussion section at the end, we will

elaborate further on these similarities and differences.
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Figure 4.3: A cellular lattice acts as a particle that rolls down on and adheres to a pseudo-energy landscape.
(A) Pseudo-energy landscape with a height defined by the pseudo-energy function h(p, I ). Orange ball is a
particle that represents a cellular lattice. The landscape is defined over a position (p, I ). A pseudo-energy
landscape for (B) activate phase, (C) deactivate phase, and (D) activate-deactivate phase. (B-D) Trajectories
of the same color start from the same position in each landscape. Black curves show maximally allowed value
of the spatial index I (i.e., function defined as Imax(p) in the main text; see Supplemental Information section
S4.5.2).

4.2.6. GRADIENT OF THE PSEUDO-ENERGY AND THE TRAPPING PROBABIL-

ITY Peq (p, I ) COMPLETELY SPECIFY THE PARTICLE’S MOTION

To deduce how exactly the shape of the pseudo-energy landscape determines the parti-

cle’s motion, we compared the gradient field of the pseudo-energy −∇h(p, I ) (arrows in

Figures 4.4A–D) with the particle trajectories produced by the cellular automaton (red

curves in Figures 4.4A–D). We discovered that the particles closely follow the stream-

lines that are dictated by the gradient field. From this and the aforementioned obser-

vation that the particles move stochastically, we conjectured that the particles may fol-

low Langevin-type dynamics in which the particle drifts (rolls) down the pseudo-energy
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landscape due to the gradient field and diffuses due to a noise term. We then proposed

a phenomenological equation of motion for the particle,

(∆p(t ),∆I (t )) =−∇h(p(t ), I (t )) ·δ+ (ηp (t ),ηI (t )) (4.4)

Here ∆p(t ) and ∆I (t ) are changes in p and I respectively between time steps t and t +1,

δ is a constant factor that scales the gradient to account for the discreteness of time in

the cellular automaton, and ηp and ηI are Gaussian noise terms that represent our ig-

norance of the microstates with a mean of zero and standard deviations of σp and σI

respectively. We determined δ, σp and σI by calculating the mean and the variance of

∆p, which in turn are set by the distribution of the signal concentrations that each cell

senses for a given (p, I ) (Supplemental Information sections S4.5.5–S4.5.6).

While the pseudo-energy determines the direction and the magnitude of changes in p

and I , it does not predict where a particle stops on the landscape. As we noted earlier

(Observation (A)), the particle can stop before its value of p reaches zero or one. This

corresponds to stopping at inclined regions of the pseudo-energy landscape. For this

reason, we consider the landscape to be “adhesive”, such that the particle can stop mov-

ing on its inclined regions. The gradient of the pseudo-energy is non-zero at such in-

clined locations, but the particle stops because it has adhered to the landscape at that

location. Such particle-adhesions occur frequently for the activate-deactivate phase and

in the autonomy phase (e.g. termination points of the brown trajectories in Figure 4.3D).

Crucially, the particle halts in a stochastic manner, meaning that for two particles that

pass through the same location (p, I ), one may get stuck there while the other does not.

This is because each macrostate (p, I ) can include microstates that are steady states of

the cellular automaton and microstates that are not. We need a probabilistic description

of how likely it is that a particle at a given location halts since we do not know which mi-

crostate is represented by the moving particle when we run a Monte Carlo simulation of

Equation 4.4. To obtain a stochastic description, we used a mean-field approach to esti-

mate, for a given macrostate (p, I ), the fraction of microstates in it that are steady states

of the cellular automaton (Supplemental Information section S4.5.5). We call this frac-

tion, which is between zero and one, a “trapping probability” and denote it by Peq (p, I ).

It is the probability that a particle at location (p, I ) corresponds to a steady-state of the

cellular automaton and thus halts there. Roughly speaking, the trapping probability

Peq (p, I ) represents the “adhesiveness” of the landscape that we discussed earlier.

To produce particle trajectories, we ran a Monte Carlo simulation that combines the

phenomenological equation of motion (Equation 4.4) and the condition that the parti-

cle halts at location (p, I ) with a probability Peq (p, I ) (Supplemental Information section

S4.5.6). We found that the particle trajectories obtained from these Monte Carlo simu-
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lations (green curves in Figures 4.4A–D) recapitulated, for a wide range of parameters,

the main qualitative features of the particle trajectories that the cellular automaton pro-

duces (red curves in Figures 4.4A–D), including the general regions where particles gets

stuck, despite some deficiencies (Figures S4.2–S4.3). We will discuss the limitations of

this approach in the discussion section at the end.
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4.2.7. STOCHASTIC SENSING CAN YIELD SPATIAL CONFIGURATIONS THAT

ARE MORE ORDERED THAN THOSE FORMED WITHOUT NOISE.
Having shown where the particle gets stuck on the pseudo-energy landscape, a natural

question is how stably the particle sticks at each location. Biological noise is a sensible

context to address this question. To address this question and as a proof-of-principle for
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demonstrating how to include stochastic gene-expression in our framework [Raj & Van

Oudenaarden, 2008; Sagues et al., 2007; Garcia-Ojalvo, 2011; Tkac̆ik & Walczak, 2011;

Sanchez & Golding, 2013; Xu et al., 2016; Friedman et al., 2006], we modified the de-

terministic cellular automaton that we have been using thus far to include stochastic

sensing. Specifically, for each cell and at each time step of the cellular automaton, we

now pick a new value for the activation threshold, K +δK . Here, K is the same value for

every cell at all times and δK is a Gaussian noise term with a mean of zero and a variance

of α2 (Figure 4.5A).

We then define a “noise strength”, ξ = α/K , that helps us determine how much noise is

required to liberate an adhered particle and cause a moving particle to significantly de-

viate from the path that it would have taken if there were no noise. Intuitively, we would

expect such deviations to occur if the noise δK is sufficiently large, such that either an

ON-cell, on which the average signal-concentration 〈YON 〉 is larger than the activation

threshold without the noise, K , would turn off due to the noise increasing the activation

threshold so that it becomes larger than 〈YON 〉, or an OFF-cell, on which the average

signal-concentration 〈YOF F 〉 is smaller than K , would turn on due to the noise decreas-

ing the activation threshold so that becomes smaller than 〈YOF F 〉. Mathematically, this

means that we would expect the minimum noise strength ξmi n required to significantly

perturb the particle trajectories to be min(|〈YON 〉−K |, |〈YOF F 〉−K |)/(K
p

N ). Indeed, we

found that a very weak noise (i.e., ξ¿ ξmi n) cannot detach an adhered particle from the

landscape (Figure 4.5B – left column) while a very strong noise (i.e., ξÀ ξmi n) can detach

an adhered particle, and thereby cause the particle to roll down the landscape further.

After being detached, the particle further changes its p, decreases its pseudo-energy, and

increases its spatial index until its p reaches either zero or one (Figure 4.5B – right col-

umn).

Moreover, we found that a moderate noise (i.e., ξ ∼ ξmi n) can liberate the adhered par-

ticle and push it further down the landscape, beyond the previously allowed region of

the landscape (i.e., beyond the region bounded by Imax(p) (black curve in Figure 4.5C)),

until it adheres to the landscape again, but now with a higher spatial index than before

and with an intermediate value of p (i.e., 0 < p < 1) (Figure 4.5C). Intriguingly, when

there is a moderate noise in the activate-deactivate phase, we observed that some of the

trapped particles’ p, I , and h very slowly changed over time, allowing the particles to

remain stuck with an intermediate value of p over hundreds but not thousands of time

steps (Figure 4.5D).
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Figure 4.5: Stochastic sensing can yield spatial configurations that are more ordered than those formed
without noise. (A) (Left column) Schematics of secrete-and-sense cells with noisy sensing. Each cell (circle) is
colored by a different shade of orange, with a darker shade representing less noise. (Top right panel) Noise in
activation threshold K , denoted δK , is normally distributed with a zero mean and a varianceα2. (Bottom right
panel) Range of activation thresholds K +δK for each cell. (B) Examples of changing fraction p of cells that are
ON, spatial index I , and pseudo-energy h for low noise (left column; ξ< ξmi n ) and high noise (right column;
ξ > ξmi n ) in the activate-deactivate phase. ξ = α/K is the noise strength and ξmi n is the minimum noise
strength required to detach an adhered particle. Both the low noise and the high noise scenarios begin with
a spatial configuration that is a steady state of the deterministic cellular automaton. (C) Particle trajectories
(red curves), in activate-deactivate phase, for a deterministic cellular automaton (left column) and cellular
automaton with a moderate noise (i.e., ξ< ξmi n ) in sensing (right column). All trajectories start at (p = 0.5, I ≈
0). Black dots show endpoints of trajectories. Maximum I as a function of p calculated through two distinct
approximate schemes. The lower approximation (black curve) corresponds to a maximum in the case without
noise and the higher approximation (orange curve) when a moderate noise is present (also see Section S4.5.2).
(D) (Top panel) Snapshots at different times of cellular lattice becoming more ordered due to noise in sensing
in the activate-deactivate phase. Black circles are ON-cells and white circles are OFF-cells. (Bottom panel):
Fraction p of cells that are ON (red curve), spatial index I (blue curve), and pseudo-energy h (green curve) over
time for the pattern formation shown in the top panel. Zoomed-in views (grey boxes) show slowly changing
p (red curve), I (blue curve), and h (green curve) that occur while the cellular lattice is in a highly ordered
metastable configuration (shown at t = 300 in the top panel).
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4.3. DISCUSSION
Here we have uncovered a visual landscape describing how communicating cells form

patterns. Specifically, we considered a ubiquitous form of cellular communication, called

secreting-and-sensing. We showed how the landscape determines how secrete-and-

sense cells’ gene expressions become more spatially correlated over time in the absence

of any pre-existing morphogens. Instead of focusing on how specific spatial patterns

such as stripes and islands emerge, we focused on the overall spatial order — by charac-

terizing it through a statistical measure of cell-cell coordination of gene expressions that

we called spatial index. This macrostate-level description has the advantage of making

exhaustive, numerical simulations that are typically used for these systems unnecessary

but has the disadvantage of being ignorant of the specific spatial patterns that form. The

spatial index, however, still allows us to discern what kinds of spatial patterns are formed

because fixing its value restricts the spatial patterns that are possible (Figure 4.2A). De-

spite its wide applicability, there are instances where the current framework would not

apply. We now turn to discussing these situations before concluding with a discussion on

how our framework is distinct from those of physics and how one can apply our model

to experiments.

Our modeling framework for secrete-and-sense cells with bistable (ON/OFF) gene-expression

relied on meeting two conditions: (1) Every cell adjusting its ON/OFF-state within the

same timescale, and (2) The concentration of the signaling molecule on each cell reach-

ing a steady state before the cell can switch its ON/OFF-state. The first condition sets

the actual time that each discrete time-step of the cellular automaton represents and is

the reason that the cellular automaton simultaneously updated every cell’s state. It is

satisfied if the variability among cells in their response times to the signaling molecule

(i.e., time taken by each cell to change between ON- and OFF-state) is smaller than the

average response-time of the cell. The second condition, which states that the typical re-

sponse time of the cells is larger than the time that the signaling molecule takes to form a

steady-state concentration, is satisfied in several biological processes. They include the

aforementioned yeasts that secrete-and-sense the mating pheromone and the regener-

ating hair follicles in mice [Youk & Lim, 2014a; Chen et al., 2015; Rappaport & Barkai,

2012; Maire & Youk, 2015b]. The condition is also satisfied by several quorum-sensing

bacteria (e.g., 20-30 seconds to establish a steady-state concentration) [Kaplan & Green-

berg, 1985; Pearson et al., 1999].

Despite these examples, a major aspect that we have neglected is that signaling molecules

are often affected by processes other than diffusion such as active transporting of the

molecules, and clustering and endocytosis of receptors. Several studies of morphogen

gradients in developing embryos, however, have shown that in many cases, one can use
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a simple diffusion alone to mathematically reproduce the creation dynamics of mor-

phogen gradients even when there are other processes [Lander et al., 2002]. Finally,

aside from conditions (1) and (2), our model assumes that cells are arranged on a tri-

angular lattice. Indeed, several systems, including the nuclei inside the early Drosophila

melanogaster embryo, can be approximated as being arranged on a triangular lattice de-

spite not satisfying both conditions (1) and (2) [Gregor et al., 2007b] (see other examples

in Table S4.1). For other regular lattices, one can modify the framework by changing the

functional form of the interaction strength fN (a0).

Another element in our framework whose validity requires a careful thought is the equa-

tion of motion (Equation 4.4). The equation of motion is a phenomenological equation

that recapitulates the main qualitative features of the particle trajectories but does not

reproduce the exact location of the particle at every time step of the cellular automaton

(Figures 4.4A–D). For example, given any initial value of the fraction p of ON-cells, the

equation of motion accurately predicts whether the p will increase, decrease, or stay the

same. But the trajectories produced by the equation of motion do not exactly match

those produced by the cellular automaton. In particular, the trajectories produced by

the equation of motion are least likely to match those of the cellular automaton at loca-

tions where the gradient vector of the pseudo-energy is perfectly horizontal (i.e., parallel

to the p-axis) or vertical (i.e., parallel to the I -axis), and most likely to match when the

gradient is at 45◦ with respect to both axes (see Section S4.5.6). Since the gradient is nei-

ther perfectly horizontal nor vertical (Figures 4.4A–D) at most locations, the gradient of

the pseudo-energy together with the trapping probability Peq (p, I ) gives a qualitatively

accurate description of the particle’s motion.

We also found that the equation of motion gives a more accurate description of the par-

ticle trajectories for strong interactions (i.e., fN (a0) > 1) than weak interactions (i.e.,

fN (a0) < 1). To see why this is, note that we used mean-field approximations, in which

we assumed that ON- and OFF-cells are randomly distributed, to determine the values of

σp , σI and δ in the equation of motion (Equation 4.4) (Supplemental Information sec-

tion S4.5.6). This mean-field approximation breaks down if long-lived, large islands of

ON- and OFF-cells form and slowly grow over time. Such islands indeed frequently form

when the interaction is weak and lead to the cellular automaton producing higher values

of the spatial index I than the equation of motion allows for (Figure S4.2). In contrast,

when the interaction is strong, the particle typically moves faster because the effect of

changing the ON/OFF-state of a single cell propagates to the far-away cells. Thus, the

entire lattice of cells typically turns on or off in a few time steps without clearly forming

local domains of ON/OFF-cells that grow over time (Figure S4.3). Hence the equation of

motion is more suitable for strong interactions than weak interactions.
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Finally, we note that another source of quantitative disagreements between the equation

of motion and the cellular automaton lies in the fact that in computing the gradient of

the pseudo-energy, the equation of motion assumes that p and I are continuous variable

when in fact they are discrete quantities since the number of cells N is finite. This con-

tinuum approximation, however, is valid in the limit of the population size approaching

infinity. This is because the spacing between two adjacent values of p is 1/N and the

spacing between two adjacent values of I for a fixed value of p scales as 1/N (see Section

S4.5.1).

In this chapter, we have shown that it is possible build a physics-type framework for com-

plex multicellular systems that are governed by chemical signals and gene-regulatory

networks. Many such systems are currently only treated by exhaustive, numerical sim-

ulations and are lacking analytic frameworks of the type that we presented here. This

situation has risen because the established metrics from physics, such as energy and

momentum, are ill-suited for describing gene expressions and chemical signals in multi-

cellular systems. While researchers have used physics-type frameworks to explain many-

body living systems such as birds that flock together [Vicsek et al., 1995] and tissues that

are subject to mechanical forces [Graner and Glazier, 1992], multicellular systems of the

type that we studied here, which are not governed by mechanical or electrical means,

have been difficult to treat by directly applying existing concepts and quantities from

physics. Despite the similarities in the approach that we have taken and that of statistical

mechanics, our framework should not be interpreted in terms of existing quantities from

physics because our model does not use any existing quantities of physics such as en-

ergy, force, momentum, or temperature. For example, the pseudo-energy (Equation 4.3)

only mathematically takes the same form as the long-ranged Ising Hamiltonian. How-

ever, the particle does not follow the equations of Hamiltonian mechanics. As another

example, the concepts of detailed balance and thermal equilibrium do not apply to the

particle that is stuck on the pseudo-energy landscape. In other words, there is no state

in which the macroscopic variables remain constant while the cellular lattice dynami-

cally transitions between microstates of the same macrostate. The notions of entropy

and temperature also do not have straightforward definitions in our system. One can

count the total number of microstates for a given (p, I ) or the number of steady-state

microstates for a given (K ,CON ) [Maire & Youk, 2015a], but neither would be a thermo-

dynamic entropy. In light of these considerations, it would be interesting to explore, in

a future work, if the quantities in our framework can be derived from the quantities of

physics.

Experimentally, one can measure the two macrostate variables, p and I , in microscope

images (e.g., by tagging fluorescent protein(s) to the output gene(s)). One may also use
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the tools of optogenetics to engineer the cells so that shining light on a single cell would

cause the cell to secrete a signaling molecule or switch between the ON- and OFF-state

[Guglielmi et al., 2016]. One can then use light to sculpt a pattern of secreting ON-cells

at the beginning of an experiment, in effect initializing the values of p and I , and then

observe how the ON- and OFF-states change by recording over time the fluorescence

of each cell that reports whether the cell is ON or OFF. Our model and its extensions

may help in understanding such microscope-based time-lapse movies of secrete-and-

sense cells that form spatial patterns. Along with studying how specific spatial patterns,

such as stripes and islands, are generated, it is useful to focus on statistically describing

how certain classes of spatial patterns arise without knowing the exact spatial patterns

involved as we have done here. This is because one often cannot measure all the param-

eters that are required for constructing detailed numerical models (e.g., gene-expression

level of every cell in a tissue). In such situations, our framework and its extensions

may help in predicting, based on a limited knowledge of the underlying gene-regulation

scheme and an estimate of the system’s initial spatial order, how the spatial configuration

of the cells evolves over time without revealing the exact location, shape, and size of the

resulting spatial pattern. We hope that our work, along with complementary approaches

for studying spatial patterns [Cotterell et al., 2015; Surkova et al., 2009; Sokolowski et al.,

2012; Tkac̆ik et al., 2008; Hillenbrand et al., 2016; Erdmann et al., 2009; Fancher & Mu-

gler, 2017; Thalmeier et al., 2016], will inform on-going efforts to establish quantitative

frameworks for multicellular gene-regulations.
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S4.4. SUPPLEMENTAL DATA ITEMS

Biological System a0 R λ τss
References

(see caption)

Hair follicle
regeneration

150µm 25-50µm* 1mm <1 day [1]

Drosophila melanogaster
Bicoid-Hunchback

8.5µm 3.25µm 100 µm 90 min [2]

Drosophila melanogaster
ommatidia

17.5µm 8.75µm** -† -† [3-6]

Drosophila melanogaster
wing development

3µm 1.45µm 220µm 6-8 hours [7-9]

Zebrafish embryogenesis
Nodal activator

20µm 10µm 135µm -† [10]

Xenopus laevis
growth factor

20−30µm 10−15µm 100µm*** 5 min**** [11, 12]

Table S4.1: (Related to Figure 4.1) Secrete-and-sense systems that are arranged on nearly triangular lattices
that motivated our work. a0 is the approximate distance between the centers of the cells. R is the average
radius of the cells. The signaling molecule has a characteristic diffusion length λ. τss is the time needed to
establish a steady state profile. Notes: *The radius, measured as the typical size of the hair follicle’s base, was
inferred from the images in the reference. **The structure is an extruded hexagon and cannot be approxi-
mated by a single radius. The reported value is half the distance between the centers of the ommatidia units.
***Assumed to be half the length of the gradient. ****τss not reported in paper, but calculated from the estimate
τss ∼ r 2/D where r is the typical signaling length in the system and D is the diffusion constant (reported).
†Quantity not known or not measured. References in the table: [1] Chen et al., Cell (2015); [2] Gregor et al., Cell
(2007b); [3] Mikeladze-Dvali et al., Cell (2005); [4] Posnien et al., PLoS ONE (2012); [5] Tsachaki and Sprecher,
Dev. Dynamics (2012); [6] Yang et al. Cell (2002); [7] Entchev et al., Cell (2000); [8] Lander et al., Dev. Cell (2002);
[9] Teleman and Cohen, Cell (2000); [10] Müller et al., Science (2012); [11] Green, Dev. Dynamics (2002); [12]
McDowell et al., Int. J. Dev. Biol. (2001)
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Figure S4.1: (Related to Figure 4.2) Density of states, indicating the number of microstates (lattice config-
urations) belonging to the same macrostate (p,I). We used two methods of calculating this density of states
(see Section S4.5.3). In random sampling, we generated a large set of random lattice configurations and bin
together configurations with the same values of p and I to get statistics. With the Wang-Landau algorithm, we
efficiently sample over a pre-defined region in p − I space using a Monte Carlo algorithm. (A) Overall density
of statesΩ determined by random sampling (left) and the Wang-Landau algorithm (right). (B) Distribution of
values of I given a fixed value of p, i.e. the conditional distribution P (I |p), for the same two methods. Note
that the axes in (A) and (B) have different scales.
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Figure S4.2: (Related to Figure 4.4) Gradient fields of the pseudo-energy, Peq , and particle trajectories —
Weak interactions. Simulated trajectories of the cellular automaton (red lines), together with trajectories of
the equation of motion Eq. S4.41 (green lines), plotted on top of the vector field generated by the negative of
the gradient of the pseudo-energy (grey arrows), plotted on top of the ‘stickiness’ Peq (color bar). Note that
Peq = 1 at p = 0 and p = 1 for all these examples (sometimes marked by a thin yellow line near the edge).
Circles represent initial values and crosses values at equilibrium. For the Langevin trajectories (green), we
took the same initial values as generated from the automaton simulations. Weak interaction regime (a0 = 1.5),
N = 121 cells. (a) Activation, K = 3,CON = 24, (b) Autonomy, K = 15,CON = 20, (c) Activation, K = 6,CON = 21,
(d) Deactivation, K = 17,CON = 14, (e) Activation, K = 10,CON = 21, (f) Deactivation, K = 20,CON = 14.
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Figure S4.3: (Related to Figure 4.4) Gradient fields of the pseudo-energy, Peq , and particle trajectories —
Strong interactions. Same as Figure S4.2, but now for the strong interaction regime (a0 = 0.5) and N = 121
cells. (a) Activation-deactivation, K = 10,CON = 5, (b) Activation-deactivation, K = 19,CON = 14, (c) Acti-
vation, K = 10,CON = 21, (d) Activation-deactivation, K = 16,CON = 8, (e) Activation, K = 14,CON = 16, (f)
Deactivation, K = 18,CON = 6.
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S4.5. SUPPLEMENTARY INFORMATION
In the Supplementary Information section, we provide details of methods, derivations

and calculations related to the main text of the chapter. We have opted to include a short-

ened version of the original Supplementary Information section published in [Olimpio

et al., 2018]. Specifically, we leave out the sections on the model extensions that include

noise and multiple cell types altogether. The main text still contains a figure and section

on lattices with noise, but leaves out multiple cell types. Furthermore, we have replaced

two more sections — the derivation of Imax (Section S4.5.2) and the proof that h is a non-

increasing function of time (Section S4.5.4) — by concise summaries outlining the main

results and sketches of the derivations. These results originated from the master thesis

of Eduardo Olimpio [Olimpio, 2016], but are not essential for understanding the rest of

the chapter. On the other hand, we have also included one more section which was not

featured in our publication [Olimpio et al., 2018], which deals with the density of states

as a function of (p, I ) (Section S4.5.3). This work originated from reviewer comments

that we addressed in a rebuttal, but did not include in the final publication.

S4.5.1. PROPERTIES OF THE SPATIAL INDEX I

DERIVATION OF THE SPATIAL INDEX I IN TERMS OF p

The spatial index, I is a modified version of the Moran index (i.e., Moran’s I ). It is a

weighted, spatial autocorrelation of the cell states whereby each cell pair (i, j) is weighted

by the interaction strength fN (ri j ) for that pair. Specifically, we defined I in the main text

as

I = N∑
i
∑

j 6=i f
(
ri j

) ∑
i
∑

j 6=i f
(
ri j

)
(Xi −〈X 〉)(X j −〈X 〉)∑

i (Xi −〈X 〉)2 , (S4.1)

where f
(
ri j

)
is the term in the interaction strength for the cell-pair (i , j ): f

(
ri j

) =
e

R−ri j

ri j
sinh(R) (this is denoted by g (ri j ) in the main text). Moreover, Xi is defined by

Xi =
−1 if cell-i is OFF

1 if cell-i is ON
, (S4.2)

which is different from the previous definition of Xi (Chapter 3.1). In the remainder of

this supplementary text, we will use this definition of Xi for reasons that will become

clearer in the following sections. Note that this definition does not change the features

of our model because our previous definition of Xi is related to this revised definition of

Xi by a linear relation (2X old
i = X new

i +1).

In terms of p, we have Xi is 〈X 〉 = 2p − 1 and
∑

i (Xi −〈X 〉)2 = 4N p(1− p). Moreover,
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by the definition of the interaction strength (equation 3.5), we have
∑

j 6=i f
(
ri j

) = fN .

Therefore

I = 1

fN

∑
i
∑

j 6=i f
(
ri j

)
Xi X j −2(2p −1)

∑
i
∑

j 6=i f
(
ri j

)
Xi + (2p −1)2N fN

4N p(1−p)

where we used the fact that f
(
ri j

)= f
(
r j i

)
. Note that

∑
i

∑
j 6=i

f
(
ri j

)
Xi = N〈∑

j 6=i
f
(
ri j

)
Xi 〉 = N fN 〈X 〉 = N fN (2p −1)

where the brackets denote averaging among all cells. Combining above results, we have

I = 〈∑ j 6=i f
(
ri j

)
Xi X j 〉− (2p −1)2 fN

4p(1−p) fN
, (S4.3)

where we have used
∑

i
∑

j 6=i f
(
ri j

)
Xi X j = N〈∑ j 6=i f

(
ri j

)
Xi X j 〉. Note that fN is a purely

geometric quantity that is almost constant when N is sufficiently large due to f (ri j ) scal-

ing as e−ri j . This is precisely equation 2 in the main text. For later use, we also define

Θ= 1

N

∑
i

∑
j 6=i

f (ri j )Xi X j . (S4.4)

With this, we can write

I = Θ(X )− (2p −1)2 fN

4p(1−p) fN
. (S4.5)

SPATIAL INDEX I IN THE LIMITS p → 0 AND p → 1

Let X = (X1, . . . , XN ) be a microstate, with Xi ∈ {−1,1}. Note that I is undefined when

p = 0 or p = 1 because both denominator and nominator vanish in Equation S4.1. So we

can only discuss what I becomes in the limit of p → 0 and p → 1. Let us consider the

limit p → 0 (same argument applies to p → 1). Given that p is a discrete variable for a

fixed value of N , taking the limit p → 0 means that we consider the value of I at p = 1/N ,

which is the lowest possible non-zero value of p. For a lattice with N cells, there are N

microstates with p = 1/N . In these states, all but one cell is OFF. Let X1 = 1, Xi 6=1 = −1,

then

Θ(X ) = 1

N

∑
j 6=1

f (r1 j )X1X j + 1

N

N∑
i=2

N∑
j=2
j 6=i

f (ri j )Xi X j = 1

N
(− fN +

N∑
i=2

N∑
j=2
j 6=i

f (ri j ))

= 1

N
(− fN +

N∑
i=2

( fN − f (ri 1))) = 1

N
(− fN + (N −2)− fN ) = N −4

N
fN . (S4.6)
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Also, p = 1/N and thus

I =
N−4

N fN − (N−2)2

N 2 fN

4(N−1)
N 2 fN

= (N −4)N − (N −2)2

4(N −1)
=− 1

N −1
. (S4.7)

For typical lattice sizes that we study (e.g., N = 225), the above equation tells us that

I ∼−0.001, which is practically zero. Moreover, we see that for N →∞, I → 0. In fact, for

N →∞, we also have p → 0 for this configuration. For these reasons, we set I = 0 when

p → 0 in our study. The same holds for the limit p → 1. Thus, defining I = 0 for a uniform

lattice seems to be a reasonable choice and ensures continuity in the limit of N →∞.

UPPER BOUND FOR THE SPACING BETWEEN ALLOWED VALUES OF I

To justify the fact that in the macroscopic equation of motion (Section S4.5.6) we take

(p, I ) to be continuous, we show in this section that the spacing between possible values

of I is bound by a value that goes to zero in the limit N →∞. Note that the spacing in

allowed values of p is 1/N and therefore trivially goes to zero. Determining the spectrum

of allowed values of I for a fixed p is a notably harder problem, which we will not tackle

in detail here. Rather, we will only derive an upper bound that goes to zero in the large

system size limit, for any p not too close to zero or one (more on this later).

Consider a microstate with p 6= 0, p 6= 1 and consider two cells k and l . Suppose Xk 6= Xl ,

i.e. one of them is an ON-cell and the other an OFF-cell. We will consider what happens

to I if we flip both cells, i.e. Xk →−Xk and Xl →−Xl (here we take Xi ∈ {−1,1}). Clearly,

the fraction of ON-cells does not change, so p remains constant. For the change inΘ, let

us first write

NΘ= ∑
i 6=k,l

∑
j 6=i ,k,l

f (ri j )Xi X j +2
∑
j 6=k

f (rk j )Xk X j +2
∑
j 6=l

f (rl j )Xl X j −2 f (rkl )Xk Xl . (S4.8)

The factors 2 come from the fact that each interaction is counted twice in the definition

of Θ (Equation S4.4). Here we have separated the terms of Θ into four terms, of which

only the middle two change when we flip the states of cells k and l . Hence we have

N∆Θ≡ N (Θnew −Θol d ) =−4
∑
j 6=k

f (rk j )Xk X j −4
∑
j 6=l

f (rl j )Xl X j . (S4.9)
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Since |Xi | = 1 for all cells and | ∑
j 6=k

f (rk j )| ≤ ∑
j 6=k

| f (rk j )| = fN , we obtain

|N∆Θ| ≤ 4

∣∣∣∣∣∑
j 6=k

f (rk j )Xk X j

∣∣∣∣∣+4

∣∣∣∣∣∑
j 6=l

f (rl j )Xl X j

∣∣∣∣∣≤ 8

∣∣∣∣∣∑
j 6=k

f (rk j )Xk X j

∣∣∣∣∣
≤ 8

∑
j 6=k

∣∣ f (rk j )Xk X j
∣∣≤ 8

∑
j 6=k

∣∣ f (rk j )
∣∣ |Xk |

∣∣X j
∣∣= 8 fN . (S4.10)

Finally, let ∆I = Inew − Iol d . Since p does not change, we have

|∆I | =
∣∣∣∣ ∆Θ

4 fN p(1−p)

∣∣∣∣≤ 2

N p(1−p)
. (S4.11)

This calculation shows that starting from an arbitrary lattice in which not all cells are ON

or OFF, it is always possible to generate a different cellular lattice with the same p, of

which the value of I differs by no more than 2
N p(1−p) . In the limit of N →∞, this value

goes to zero whenever p is not too close to 0 or 1. Therefore, as long as we are away from

the boundaries, we can safely take I to be continuous in the limit of large system size.

For p close to zero and one, the bound might be very large (but note that the above

argument excludes the extremes p = 0 and p = 1). However, there are very few different

values of I that are possible near these bounds. For instance, for a single ON-cell in a

lattice of OFF cells there is only one value of I possible. For two ON-cells, the number

of unique values equals the number unique distances possible between two cells. As we

argued in the main text and in the previous section, the value of I becomes irrelevant in

these limits as there are only one or a few values possible. Nevertheless, we should be

careful when considering the value of I near these bounds.

S4.5.2. DERIVING THE MAXIMUM ALLOWED VALUE OF |I | FOR EACH p
Detailed results of this section are presented in Supplementary Information section S3 of

Olimpio et al., 2018. Here we give a summary of the main results.

We derived two approaches for estimating the maximum allowed values for I as a func-

tion of p. The first approach relies on a mean-field approximation and results in the

dashed black curves in Figs. 4.3 and 4.5. We first estimate I through a mean-field approx-

imation, where we exactly calculate the contributions to the sensed concentrations from

nearest neighbors, and estimate the contributions from the rest of the system. Then, we

express the result as a function of the average number of ON nearest neighbors 〈mi=ON 〉.
This quantity 〈mi=ON 〉 in turn depends on the geometry of the clusters of ON-cells and

can be fully expressed in terms of the areas and perimeters of connected domains (poly-

gons) of ON-cells. This idea is analogous to polygon constructions used to study the
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critical point in the Ising model. Based on these two results, one can then argue that the

geometry that maximizes the spatial index I is when all ON-cells are packing into a sin-

gle polygon. Since the same argument can be made for OFF-cells, we obtain two bounds

I ON
max(p) and I OF F

max (p). We then choose Imax(p) = max(I OF F
max (p), I ON

max(p)). Explicitly, the

result is

I ON
max ≈

(
6(1−p)− 6

pN
− 8√

pN

)
f (a0)

(1−p) fN
, (S4.12)

I OF F
max ≈

(
6p − 6

(1−p)N
− 8√

(1−p)N

)
f (a0)

p fN
. (S4.13)

This first method slightly underestimates the true maximum allowed values of I (dashed

black curves in Figs. 4.3 and 4.5).

The second construction relies on making a continuum approximation for the sum over

all cells and results in the dashed orange curve in Figure 4.5C. Specifically, we replace the

sum by an integral weighted by a “density of states”, which is the density of cells at a given

distance r from an arbitrary cell. This is comparable to the density of states (in terms of

energy) in condensed matter physics used to infer e.g. electronic properties of solids.

One then again estimates the maximum by assuming that all cells of the same state (ON

or OFF) are clustered together in a single (spherical) domain. Next, by using the expres-

sion for I in terms of p (without Θ; Equation S4.3), one obtains the corresponding value

of I , which can be expressed as:

Imax =
fN −2G

(
pe−LON + (1−p)e−LOF F −e−L

)− (2p −1)2 fN

4p(1−p) fN
, (S4.14)

G = 2πeR sinh(R),

LOF F =
√

((1−p)N −7)Acell

π
+ (1.5a0)2,

LON =
√

(pN −7)Acell

π
+ (1.5a0)2.

This construction assumes a perfect separation between ON and OFF cells into spherical

domains, and further makes a continuum approximation for the density of states. As a

result, the value of Imax is overestimated (dashed orange curve in Figure 4.5C).

S4.5.3. DENSITY OF STATES AS A FUNCTION OF (p, I )
This this section, we discuss two methods to calculate the density of states, i.e. how many

microstates fit into the same macrostate (p, I ). DenoteΩ(p) as the number of states with
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a fixed value of p = k/N , k ∈ 0,1, . . . , N – this is easily obtained as the binomial
(N

k

)
. Define

Ω(p, I ; N , a0) as the total number of states given (p, I ). Let us also define P (p, I ) = Ω(p,I )
2N

as the fraction of states for given (p, I ). The calculation of these quantities is non-trivial

due to way I is defined. Below we represent two methods of computing approximate

values of these quantities as functions of (p, I ).

RANDOM SAMPLING

Naively, the most straightforward method of estimation is by randomly sampling over a

large number of configurations. Concretely, one generates random configurations, com-

putes the value of (p, I ) for each configuration, and then bins the sampled results to ob-

tain P (p, I ). As the number of states 2N is typically much larger than the sample size, we

cannot expect it to give highly accurate results. In particular, rare events that occur with

low probability are likely to be missed, so that the sampled distribution tends to become

strictly zero beyond a certain region, while the actual distribution is not.

One slight improvement to fully random sampling is what we will call ‘conditional sam-

pling’. In this case, we fix one of our variables at a time and then sample over configura-

tions with that fixed variable to obtain the conditional distribution of the other variable.

In our system, it is straightforward to fix p and generate random configurations to obtain

the conditional distribution P (I |p) = P (p, I )/P (p). Since P (p) = ( N
N p

)
, we obtain P (p, I )

andΩ(p, I ) by computing P (I |p) for each value of p.

WANG-LANDAU ALGORITHM

A method that is tailored to obtain a better estimate for especially the outlier values of

I is the Wang-Landau (WL) algorithm [Wang & Landau, 2001]. This is mainly used to

calculate the density of states (DOS) — i.e. the number of states at a fixed value of energy

— of spin systems such as the Ising model. The main idea is to perform a random walk

in phase space by proposing a spin flip at each step, that is accepted with a probability

similar to the Metropolis algorithm, but where less frequent states are more likely to be

accepted. Starting from an initial guess, we gradually update a function that gradually

becomes closer and closer to the DOS up to a proportionality factor.

We exploit the similarity of our system to a spin model and adapt the WL algorithm to

calculate P (I |p), which we will informally refer to as our DOS. The first main difference

is that the random walk needs to be over states with fixed p. This is achieved by flipping

two cell states at a time, one random OFF cell and a random ON cell. Also, the ‘density’ is

for the spatial order parameter I rather than some energy function. We thus obtain the

following detailed scheme (adapted and modified from [Barros et al., 2015]):

1. Start with an arbitrary configuration of with fixed p and a guess for the DOS, which

we take to be g (I ) = 1 for all possible I .
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2. Choose an OFF cell and an ON cell at random and make the configuration with

the selected OFF cell turned ON and the ON cell turned OFF. Compute the spa-

tial order parameter for the original configuration, I1, and for the proposed new

configuration, I2. Accept the change with probability

p(I1 → I2) = min

(
g (I1)

g (I2)
,1

)
. (S4.15)

This ensures that changes to states that have been less visited (for which g (I2) <
g (I1) are always accepted.

3. Let I be the resulting value of the trial flip. We then update our function by a mod-

ification factor f > 1,

g (I ) → f g (I ). (S4.16)

4. The resulting I value is stored in a histogram (with bins that need to be manually

specified).

H(I ) → H(I )+1. (S4.17)

5. Repeat steps 2-4 until the histogram H(I ) is sufficiently flat. This is imposed through

a flatness parameter pflat < 1, which specifies how close all bins have to be to the

average bin value 〈H(I )〉. The condition then becomes

H(I ) > pflat ×〈H(I )〉 (S4.18)

for all bins of the histogram.

6. After the flatness criterion is reached, we update the modification factor f through

f → ( f )
1
2 . (S4.19)

If f < ffinal, we are done.

7. Otherwise, we reset the histogram, H(I ) → 0 for all I , and repeat the entire proce-

dure above with the new value of f .

In the implementation we work with logarithms of g (I ), because the values quickly be-

come too large to handle for a typical simulation. The parameters we need to set in the

simulation are f , f0, ffinal, the histogram bins for I , and pflat. We take the histogram

to have 30 bins over the interval [−0.06,0.14]. Choosing a larger value leads to longer

running times as it becomes harder to sample over rare values of I (or an infinite loop

if one of the bins is fully outside the permitted range of I !). We take the rest of the pa-
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rameters to be similar to typical values suggested for the Ising model [Wang & Landau,

2001]: f = f0 = e ≈ 2.71828, pflat = 0.8. However, we take ffinal = exp
(
10−4

)
, which leads

our simulation to finish in less time than the suggested ffinal = exp
(
10−8

)
. Finally, we

normalize by dividing our result for g (I ) by
∑

I∈bins
g (I ). In practice we typically need to

rescale g (I ) to avoid overflow problems, for instance by dividing all values by min
I∈bins

g (I ).

Note that this does not influence the result since g (I ) is proportional to P (I |p).

S4.5.4. PROOF THAT THE PSEUDO-ENERGY h IS A NON-INCREASING FUNC-

TION OVER TIME

Detailed results of this section are presented in Supplementary Information section S4 of

Olimpio et al., 2018. Here we give a summary of the main results.

We first express the change in H at any given time as a function of the changes in the cell

states ∆Xm (notation: ∆Xm(t ) = Xm(t +1)−Xm(t ), i.e. the state change for cell m):

∆H =−2
∑
m
∆Xm(Ym −K )−B

∑
m
∆Xm , (S4.20)

B =
(

CON +1

2
(1+ fN )−K

)
.

One can then argue that 2
∑

m∆Xm(Ym−K ) ≥ 0 and analyze the behavior for the different

behavioral phases individually (cf. Section 4.2.2 in the main text). It is then straightfor-

ward to show that∆H ≤ 0 in the (1) the autonomy phase, for which∆H = 0 by definition,

(2) activation phase, for which B > 0 and
∑

m∆Xm ≥ 0, and the (3) deactivation phase, for

which B < 0 and
∑

m∆Xm ≤ 0. The only non-trivial case to prove is then the activation-

deactivation phase. The proof here relies on first proving thatΘmonotonically increases

over time, and then expressing h explicitly in terms of p and I . Explicitly, we obtained

h(p, I ) =− (CON −1)

2

(
1+4 fN p(1−p)I + (2p −1)2 fN

)
,

− (2p −1)

[
(CON +1)

2

(
1+ fN

)−K

]
. (S4.21)

Through Equation S4.5, one can then express h in terms of (p,Θ). Then Θ ≥ 0 implies

∆h ≤ 0 whenever two conditions for ∆p in terms of the signal field B are satisfied. We

empirically verified these conditions in simulations.
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S4.5.5. DERIVATION OF THE TRAPPING PROBABILITY — Peq (p, I )
The concentration Yi sensed by cell-i is:

Yi = Y self
i +Y nei

i , (S4.22)

where Y self
i is the self-contribution (i.e., signal secreted by cell-i itself) and Y nei

i is the

contribution from all other cells. Specifically, they are

Y self
i = (CON −1) Xi +1, (S4.23a)

Y nei
i = ∑

j 6=i
f (ri j )

[
(CON −1) X j +1

]
. (S4.23b)

The probability that an ON-cell remains ON in the next time step is the same as the prob-

ability PON→ON that the signal concentration on an ON-cell is larger than the threshold

concentration K :

PON→ON = P ( Yi > K |Xi = 1) = P
(

Y nei
i > K −CON

∣∣ Xi = 1
)

. (S4.24)

Similarly defining POF F→OF F as the probability that an OFF cell senses a concentration

of the signal that is lower than K , we have

POF F→OF F = P ( Yi < K |Xi = 0) = P
(

Y nei
i < K −1

∣∣ Xi = 0
)

. (S4.25)

We will show below that PON→ON and POF F→OF F are expressible in terms of p and I . If

we randomly pick a microstate out of a "box" that belongs to a macrostate (p, I ), the

probability that the microstate is an equilibrium state is given by the trapping probabil-

ity Peq (p, I ), where

Peq (p, I ) = (PON→ON )n (POF F→OF F )N−n . (S4.26)

Since we do not know exactly where each ON- and OFF-cell is but only know that there is

a total of n ON-cells, we treat Xi for all i as a random variable. Accordingly, Y nei
i is also a

random variable. Furthermore, by placing the cells in the lattice in a completely random

fashion, Y nei
i does not depend on the state of cell-i, Xi . Thus

PON→ON = P
(
Y nei

i > K −CON
)

, (S4.27a)

POF F→OF F = P
(
Y nei

i < K −1
)

. (S4.27b)

We assume that Xi follows a binomial distribution with a probability p = n/N . Then the

mean of the Xi distribution is p and the variance is (1−p)p. For a large N , the Central
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Limit Theorem dictates that 〈Xi 〉 is normally distributed:

〈Xi 〉 ∼N
(
p, p(1−p)

)
, (S4.28)

where N
(
µ,σ2

)
is the normal distribution with mean µ and variance σ2. To find how

Y nei
i is distributed, we use equation S4.23b. Since each cell’s position is fixed, Y nei

i is lin-

ear in Xi and is thus also normally distributed. This means that we only need to compute

the mean and the variance of Y nei
i , which depend on both p and the spatial index I . Be-

cause I is related to whether a cell has neighbors that are similar or different from itself,

the sensed concentration for an OFF-cell will be different from for an ON-cell within the

same configuration whenever I 6= 0. For an OFF-cell, we write Y nei
i=OF F ∼N

(
µOF F ,σOF F

)
,

whereas for an ON-cell we have Y nei
i=ON ∼N

(
µON ,σON

)
.

To calculate the means and variances, we first change notation and define X̃ = 2X −1, so

that X̃ ∈ {−1,1}. Then we can write

Y nei
i =

(
CON +1

2

)
fN +

(
CON −1

2

) ∑
i 6= j

f (ri j )X̃ j . (S4.29)

Taking the average of above, we have

µON =
(

CON +1

2

)
fN +

(
CON −1

2

)〈∑
i 6= j

f (ri j )X̃ j

∣∣∣∣i =ON

〉
, (S4.30a)

µOF F =
(

CON +1

2

)
fN +

(
CON −1

2

)〈∑
i 6= j

f (ri j )X̃ j

∣∣∣∣i =OF F

〉
. (S4.30b)

Note that we can write the expression forΘ (Equation S4.4) as

Θ= p

〈∑
i 6= j

f (ri j )X̃ j

∣∣∣∣i =ON

〉
− (1−p)

〈∑
i 6= j

f (ri j )X̃ j

∣∣∣∣i =OF F

〉
. (S4.31)

At the same time, using Bayes’ theorem we have〈∑
i 6= j

f (ri j )X̃ j

〉
= (2p−1) fN = p

〈∑
i 6= j

f (ri j )X̃ j

∣∣∣∣i =ON

〉
+(1−p)

〈∑
i 6= j

f (ri j )X̃ j

∣∣∣∣i =OF F

〉
.

(S4.32)

Combining S4.31 and S4.32 allows us to solve for 〈∑i 6= j f (ri j )X̃ j |i =ON〉 and 〈∑i 6= j f (ri j )X̃ j |i =
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OF F 〉. Combined with S4.30 we obtain

〈
Y nei

ON

〉≡µON = fN
[
CON p +1−p + (CON −1)(1−p)I

]
, (S4.33a)〈

Y nei
OF F

〉≡µOF F = fN
[
CON p +1−p − (CON −1)pI

]
. (S4.33b)

For the variance of the sensed concentration of the signal, we change back to the original

notation with Xi ∈ {0,1}. From a mean-field approximation we then obtain

〈Y nei
i 〉 = ∑

j 6=i

[
(CON −1)〈X j 〉+1

] eR−ri j

ri j
sinh(R) = [

(CON −1) p +1
]

fN (a0) ≡µp . (S4.34)

Moreover, we have

〈(Y nei
i

)2〉 = ∑
j 6=i

(CON −1)2 〈X 2
j 〉

e2(R−ri j )

r 2
i j

sinh2(R) = (CON −1)2 p(1−p)gN (a0) ≡σ2
p ,

(S4.35)

where we have defined the function

gN (a0) ≡
∑
j 6=i

e2(R−ri j )

r 2
i j

sinh2(R). (S4.36)

From this, we obtain

σON =σOF F = (CON −1)
√

gN p(1−p). (S4.37)

Combining above results, we finally have

PON→ON = 1−D
(
K −CON ;µON ,σON

)= 1

2

[
1−erf

(
K −CON −µONp

2σON

)]
, (S4.38a)

POF F→OF F = D
(
K −1;µOF F ,σOF F

)= 1

2

[
1+erf

(
K −1−µOF Fp

2σOF F

)]
, (S4.38b)

where D
(
x;µ,σ

)
is the cumulative distribution function of the Gaussian with mean µ

(equation S4.33) and standard deviationσ (equation S4.37) while erf(x) is the error func-

tion.

S4.5.6. EQUATION OF MOTION DERIVED FROM THE PSEUDO-ENERGY

In this section we derive the equation of motion (Equation 4.4), determine the values of

the new variables in this equation of motion and discuss on a technical level the validity

of the approach. A more colloquial discussion is included in the main text.

From observations, we see that the simulated trajectories follow paths whose directions
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tend to point in the direction of fastest descent of the pseudo-energy (Figure 4.4). This

motivates us to construct an equation that utilizes the direction of fastest descent. The

gradient of the pseudo-energy is given by~∇h = ( ∂h
∂p , ∂h

∂I ), with

∂h

∂p
=−(CON −1)2 fN (1− I )(2p −1)− (CON +1)( fN +1)+2K ,

∂h

∂I
=−2 fN (CON −1)p(1−p). (S4.39)

Note that the above expression implies that there are no local minima of h which are

not on the boundary of the (p, I ) phase space. This follows from the fact that the gra-

dient must vanish at a local minimum, and the only points at which ∂h
∂I vanishes are

(p, I ) = (0,0) and (p, I ) = (1,0) (taking into account the fact that p = 0 and p = 1 have

only one microstate with I = 0, see Section S4.5.1). Hence for 0 < p < 1 there can be no

local minima. Therefore, the trapped configurations alluded to in the main text cannot

be directly related to the minima of the pseudo-energy.

Recall that the direction of steepest descent at any point (p, I ) is given by the negative of

the gradient, −~∇h. As a first attempt, we can therefore try as phenomenological equa-

tions

∂p

∂t
=−∂h

∂p
,

∂I

∂t
=−∂h

∂I
. (S4.40)

While in some cases the streamlines produced by this vector field closely approach the

automaton simulations, Equation S4.40 misses out an important aspect of the macrostate-

level dynamics. The dynamics it produces is deterministic, providing only one pos-

sible trajectory for a given starting macrostate (p0, I0). This ignores the fact that the

macrostate-level description is degenerate — a macrostate (p, I ) usually has many mi-

crostates, which could follow multiple non-identical trajectories.

Hence we need to introduce noise terms to represent our ignorance of the microstates.

We choose to add white noise, constructing a Langevin equation where the (negative

of the) gradient represents the drift term and the Brownian motion corresponds to the

variability between trajectories of different initial microstates. The next caveat is that

the cellular automaton operates in discrete time, where a Langevin equation consisting

of S4.40 with added noise terms would naturally be described in continuous time. To

better assess the compatibility of the Langevin equation with our discrete time cellular

automaton, we need to modify it into a discrete time equation whose time steps reflect

average changes in the automaton.
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To do this, we first introduce a step size δ, which is a scaling factor that controls how

far along the negative of the gradient the system should travel in one time step. Our

discrete-time system then becomes

∆p =−∂h

∂p
δ+ηp ,

∆I =−∂h

∂I
δ+ηI . (S4.41)

Here we have introduced the noise as Gaussian variables ηp ∼ N (0,σp ),ηI ∼ N (0,σI ).

Next, we will derive expressions for these parameters based on the microstate-level de-

tails of the system.

MEAN-FIELD CALCULATION OF ∆p , USED FOR OBTAINING δ

In this section we provide a calculation of∆p based on the switching probabilities PON→ON

and POF F→OF F used in Section S4.5.5. By comparing the result with Equation S4.41 we

can fix the value of δ, as we will show in the next section.

Recall that ∆p is the amount of change in p at time step t . Using the probabilities

calculated in the section S4.5.5, we can calculate by how much p changes at time t :

∆pt = pt+1 − pt . We will use this to obtain a constant scale factor δ that rescales the

gradient of the pseudo-energy in the equation of motion. We assume that all ON-cells

have a binomial chance of transitioning to an OFF state with probability 1−PON→ON .

Therefore, if we have n ON-cells, the probability that y− ON-cells will switch OFF in the

next time step is

P (y−;n,1−PON→ON ) = P n−y−
ON→ON (1−PON→ON )y−

(
n

y−

)
. (S4.42)

Similarly, the probability that y+ OFF-cells will switch ON in the next time step is

P (y+;n,1−POF F→OF F ) = P N−n−y+
OF F→OF F (1−POF F→OF F )y+

(
N −n

y+

)
. (S4.43)

We are now interested in the mean and the variance of ∆pt . Note that

∆pt = 1

N

(
y+− y−

)≡ p+−p−. (S4.44)

The mean of a binomial distribution with N draws and probability p is N p. Hence, tak-

ing the average of equation S4.44, we obtain the average of ∆pt :

〈∆pt 〉 ≡ E(p+)−E(p−) = (1−p)(1−POF F→OF F )−p(1−PON→ON ). (S4.45)
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To calculate the variance of ∆pt , we assume that we can approximate the distributions

S4.42 and S4.43 as being independent Gaussians. This assumption is most accurate

when n and N −n are both sufficiently large. With this assumption, we obtain the fol-

lowing simplified result for the variance:

Var
(
∆pt

)≈ Var
(
p+

)+Var
(
p−

)
,

= 1

N

[
(1−p)(1−POF F→OF F )POF F→OF F +p(1−PON→ON )PON→ON

]
. (S4.46)

Note that in the thermodynamic limit (N →∞), the variance of ∆pt goes to zero as ex-

pected.

PARAMETERS OF THE EQUATION OF MOTION

We will use the results derived above to fix δ. Recall that the probabilities PON→ON

(Equation S4.24) and POF F→OF F (Equation S4.25) are functions of p and I , so 〈∆p〉 de-

pends on both p and I . This suggests a way of fixing δ= δ̃(p) defined through

〈∆p〉 =−∂h

∂p
δ̃(p). (S4.47)

In this way, the equation of motion would always predict∆p to be equal to 〈∆p〉 as given

in S4.45. However, the quantity δ̃(p) depends on p through 〈∆p〉 and ∂h
∂p which is in-

consistent with how we arrived at S4.41. To obtain a constant scaling factor, we have to

average this quantity over a suitable weight function on (p, I ) space. We choose to aver-

age this quantity over p with as weight the fraction of states with n ON cells or p = n/N ,

fp = 1

2N

(
N

n

)
. (S4.48)

Since I enters the equations only through ∂h
∂p , which depends linearly on I , we make

the approximation that I = 0. This is justified by calculations in which we find that the

density of states (i.e. the number of microstates corresponding to a macrostate (p, I )) is

highest around I ≈ 0 for each value of p (Figure S4.1). Thus we obtain δ through a double

averaging procedure as

δ=
N∑

n=0
fp δ̃(p) =−

N∑
n=0

fp〈∆p〉
(
∂h

∂p

)−1

. (S4.49)

More explicitly,

δ=
N∑

n=0

1

2N

(
N

n

)
(1−p)(1−POF F→OF F )−p(1−PON→ON )

(CON −1)2 fN (2p −1)+ (CON +1)( fN +1)−2K
. (S4.50)
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Here, we implicitly also take I = 0 in the expressions for PON→ON and POF F→OF F .

To estimate the noise, we use S4.45, but now derive

N 2Var(∆p) = Var(y+)+Var(y−)−2Cov(y+, y−),

= Var(y+)+Var(y−),

= N (1−p)(1−POF F→OF F )POF F→OF F ,

−N p(1−PON→ON )PON→ON . (S4.51)

The first equality follows from the independence of y+ and y−, and the second follows

from the properties of the binomial distribution. As for δ we first define a p-dependent

(or n-dependent) standard deviation

σ̃p (n) =√
(1−p)(1−POF F→OF F )POF F→OF F −p(1−PON→ON )PON→ON . (S4.52)

Hence we define the noise in ∆p as

σp =
N∑

n=0
fp σ̃p (n). (S4.53)

To obtain the first two moments of ∆I , we note that in the absence of noise, any change

in I is related to the change of p through the gradient (Equation S4.41), namely through

∆I = ∂h

∂I

(
∂h

∂p

)−1

∆p. (S4.54)

We now assume that the same relation holds for the first two moments of ∆I , giving

〈∆I 〉 = ∂h

∂I

(
∂h

∂p

)−1

〈∆p〉,

σI = ∂h

∂I

(
∂h

∂p

)−1

σp , (S4.55)

STOPPING CONDITION

Equation S4.41 alone cannot predict where the trajectories will end. If we do not impose

any conditions, the trajectories would always escape from the allowed phase space or

end at the edge, as we have seen that there can be no points with 0 < p < 1 where the

gradient vanishes. To fix this problem and predict terminal macrostates for our system,

we set up two more rules for the evolution of S4.41. First, let the system terminate at

(p, I ) with probability Peq (p, I ), the trapping probability Peq (p, I ) we derived in Section
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S4.5.5. This is done through a Monte Carlo step, in which we draw a random number

and compare it with Peq (p, I ) to decide whether to terminate the simulation.

Second, we add an additional rule near the boundaries of the phase space. As the particle

trajectories have a tendency to cross p = 0 or p = 1 at values of I 6= 0, we need to impose

an additional stopping condition to prevent the particle from leaving the phase space

(i.e., p > 1 and p < 0). Recall that for p = 0 and p = 1 we only have one microstate with

I = 0. Therefore, we set up the additional rule that (p, I ) → (0,0) and (p, I ) → (1,0) when

the system attempts to exit the phase space across p = 0 or p = 1 respectively.

PARTICLE TRAJECTORIES FROM THE GRADIENT FIELD OF THE PSEUDO-ENERGY AND Peq

Given the equation of motion and Peq , we can predict the particle trajectories and com-

pare them with the particle trajectories produced by the cellular automaton. We find that

for all the different behavioural phases, the equation of motion approximates the trajec-

tories well and generally predicts the correct final (resting) configurations (Figs. S4.2,

S4.3). A more detailed discussion of these results is given in the main text.

Note that we can clearly identify a region of low Peq (blue) and a region of high Peq (yel-

low) with a relatively sharp transition between them. Furthermore, the cellular automata

terminate mostly in regions where Peq is high. These two features imply that that using

only Peq , we can predict in which regions in (p, I ) the particles will likely come to a rest,

if it ever reached the region. Also, it means that there is a graphical way to estimate the

particle trajectories and their stopping points in the (p, I )-space. First, we plot the vec-

tor field and Peq together (Figs. 4 and S4.2-S4.3). From the directions of the vector field,

we can estimate how the particle will move. By tracing out these trajectories until the

particles reach a region where the Peq is high, we can get an estimate of the final (p, I )

of the trajectory. As seen in Figs. S4.2-S4.3, this gives a good estimate of the direction

and endpoints of the trajectories. The match between the particle trajectories dictated

by the equation of motion and those produced by the cellular automaton depends on

the parameters (i.e., CON , K , and fN ), but in general the overall direction and endpoints

match well.

WHY THE GRADIENT APPROACH WORKS: THE ALLOWED RANGE OF DIRECTIONS

Apart from observing that the particles seem to move in the direction of steepest descent

of h, we can make a more precise mathematical argument as for why −~∇h is a good

estimate for the particle’s direction of the motion. The argument that we will give here

will also show that the range of allowed directions is much larger (spanning an arc of

π radians or half a circle). Whether the trajectories are likely to match with gradient

vector field or not in part depends on how its direction relates to this range of allowed

directions. In particular, whenever the gradient is (close to) horizontal (i.e., zero degrees)
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or vertical (i.e., π/2 raidans) in the (p, I ) space, significant deviations from the direction

of steepest descent are possible.

The fact that the pseudo-energy is a Lyapunov function means that the system can only

move in a direction for which the pseudo-energy decreases. It cannot move in the direc-

tion of the (positive of the) gradient ~∇h and by continuity also not in a direction close

to it. To be precise, define ~v = (cosθ, sinθ) as a unit vector and define θ as the angle it

makes with the gradient ~∇h. Recall that the system does not have any local minima as

shown earlier, so the gradient cannot vanish. Therefore θ is well-defined. Define

∆h(θ) =~∇h ·~v(θ). (S4.56)

It follows that ∆h(0) > 0 and ∆h(π) < 0, as the gradient and negative of the gradient

point in directions of steepest ascent and descent respectively. By continuity, there exist

0 < θ1 < π and π < θ2 < 2π for which ∆h(θ1) = 0 and ∆h(θ2) = 0 (Intermediate Value

Theorem). Hence we can define an interval Iθ ≡ [θ1,θ2] that gives the range of directions

in which h decreases, i.e. for all θ ∈ Iθ , we have ∆h(θ) ≤ 0. From ∆h(θ) = 0, we see that

θ1 and θ2 are solutions to

tanθ =−∂h

∂p

(
∂h

∂I

)−1

. (S4.57)

This has an exact solution on S1 = {0 ≤ θ ≤ 2π|0 ≡ 2π} with θ2 = θ1+π. Therefore, |Iθ| =π.

Conversely, the minimum and maximum of ∆h(θ) are defined through d∆h(θ)
dθ = 0, for

which the solution is tanθ = ∂h
∂p

(
∂h
∂I

)−1
. From the properties of the tangent function, one

can check that the solutions to tan x = c and tan x =−c are close to each other whenever

|c| is either very small or very large. Note that the angles are defined on a circle, so dis-

tances are measured by taking the solutions modulo 2π. This implies that the minimum

is close to the bounds of Iθ whenever ∂h
∂p

(
∂h
∂I

)−1
goes to 0 or ∞. This can only happen if

either ∂h
∂p → 0 or ∂h

∂I → 0.

LIMITATIONS OF THE GRADIENT APPROACH

The argument above shows that the negative of the gradient gives a direction of the par-

ticle’s motion indication and represents a first-order approximation. However, the range

of directions in which the system is in principle able to move (given its macrostate) is in

fact much wider — the unit vectors of the allowed directions lie on a half circle which

contains −∇̂h (unit vector pointing in direction of −~∇h). Whether the trajectories will

seem close to the negative of the gradient depends on the position of −∇̂h on this half

circle. If −∇̂h points at the middle of this ‘allowed arc’, then the trajectories can devi-

ate at most a right angle from −∇̂h. However, if −∇̂h is in a direction close to one of

the edges, then deviations can in principle approach a limiting value of 180 degrees. We
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have shown in the previous section that the latter occurs only if the vector field points

close to vertical or horizontal. Indeed, a closer look at the trajectories of Figs. S4.2 – S4.3

reveals that significant deviations from the automaton trajectories are almost exclusively

found in cases where the vector field is close to horizontal or vertical. This is apparent

in all of the weak interaction pictures (Figure S4.2), but also in the region in which the

horizontal component of the vector field changes sign in the strong interaction regime

(Figure S4.3).



5
CELLULAR DIALOGUES THAT

ENABLE SELF-ORGANIZATION OF

DYNAMIC SPATIAL PATTERNS

Cells form spatial patterns by coordinating their gene expressions. How a group of meso-

scopic numbers (hundreds-to-thousands) of cells, without pre-existing morphogen gradi-

ents and spatial organization, self-organizes spatial patterns remains poorly understood.

Of particular importance are dynamic spatial patterns such as spiral waves that perpet-

ually move and transmit information. We developed an open-source software for simu-

lating a field of cells that communicate by secreting any number of molecules. With this

software and a theory, we identified all possible “cellular dialogues” — ways of communi-

cating with two diffusing molecules — that yield diverse dynamic spatial patterns. These

patterns emerge despite widely varying responses of cells to the molecules, gene-expression

noise, spatial arrangements, and cell movements. A three-stage, “order-fluctuate-settle”

process forms dynamic spatial patterns: cells form long-lived whirlpools of wavelets that,

following erratic dynamics, settle into a dynamic spatial pattern. Our work helps in iden-

124
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tifying gene-regulatory networks that underlie dynamic pattern formations.

5.1. INTRODUCTION
Spatial patterns can form when multiple cells, without pre-existing morphogen gradi-

ents, communicate with each other to coordinate their gene expressions [Gregor et al.,

2010; Lubensky et al., 2011; Sgro et al., 2013; Idema et al., 2013, Manyukan et al., 2017;

Jörg et al., 2019]. Understanding how cells collectively organize spatial patterns through

cell-cell communication is crucial for understanding and engineering mammalian tis-

sues [Javaherian et al., 2013]. Many synthetic and natural mammalian tissues are mono-

layers of genetically identical cells (e.g., epithelial sheets) whose gene-expression levels

are initially uncorrelated but become more correlated over time during development,

leading to specialized cell types within tissues. This process often involves cell-cell com-

munication [Menendez et al., 2010]. There has been a rising interest in developing ex-

perimental methods for spatially arranging individual cells in a monolayer and then

observing how such a heterogeneous tissue — composed of cells at differing locations

having different gene-expression levels — develops over time [Javaherian et al., 2014].

Although there are quantitative models to explain such experiments, they are often tai-

lored to specific tissues and signaling molecules. Thus, it is challenging to use them as

a general framework that one can adapt to different gene-circuits, signaling molecules,

and cell types [Drasdo et al., 2007]. Currently unknown is a comprehensive set of gener-

ally applicable, quantitative mechanisms by which organized spatial patterns can form

in heterogeneous tissues made of mesoscopic numbers (hundreds to thousands) of cells

without pre-existing morphogen gradients (Figure 5.1A – top).

To explain pattern formations, one often uses reaction-diffusion equations and Turing

instability, in which a uniformly spread field of chemicals develops minute fluctuations

in its chemical concentrations at some locations that grow over time to yield spatial pat-

terns (Figure 5.1A – bottom) [Turing, 1952]. Although theoretical studies of Turing insta-

bility uncovered many insights into how continuous fields of chemicals or cells form pat-

terns, the instability does not treat gene expressions of individual cells when there are bi-

ologically realistic, mesoscopic numbers of cells (Figure 5.1A – top). Furthermore, while

An adapted version of this chapter has been published as Y. Dang, D.A.J. Grundel and H. Youk, “Cellular Di-
alogs: cell-cell communication through diffusible molecules yields dynamic spatial patterns”, Cell Systems 10,
82–98.e7 (2020). Note that the published version includes supplementary videos omitted from the written
thesis.
Some results from this chapter have also appeared in the master thesis of D.A.J. Grundel [Grundel, 2019].
Full source code of all scripts used to obtain the results in this chapter is available at:
https://github.com/YitengDang/Cell_Systems_2019.
Full data sets containing all analyzed data used in the figures in this chapter is available at Dryad:
https://doi.org/10.5061/dryad.6hdr7sqw5
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many gene networks can use Turing instability to generate spatial patterns, they are not

robust as their circuit paramters need to be finely tuned [Marcon et al., 2016, Scholes

et al., 2019]. In light of these difficulties, a promising route for explaining multicellular

patterning would be to develop multiscale models that link intracellular signaling with

cell-cell communication for mesoscopic numbers of cells. While researchers have de-

veloped such models for specific systems — examples include studies of how eyes form

[Lubensky et al., 2011] and neurons differentiate [Jörg et al., 2019] — we currently lack

a general framework for identifying widely applicable principles of pattern formation.

Motivated by this shortcoming, we sought to build a generalized framework that uncov-

ers relationships between properties of cellular communication — the various ways in

which the cells secrete and sense signaling molecules — and gene-expression patterns

(spatial patterns) that emerge for mesoscopic populations of cells.

Here we developed an open-source software that simulates spatial-patterning dynamics

for a system of communicating cells1. One can easily modify and expand our software

with more ingredients, and use it for both research and educational purposes. We also

developed algorithms for analyzing these simulations. With the software and analysis

algorithms, we sought to quantitatively reveal mechanisms by which mesoscopic num-

bers of cells can form spatial patterns. We focused on dynamic patterns — patterns that

constantly change over time without ever stopping such as oscillations and spiral waves

[Sgro et al., 2013] — instead of static patterns that remain still after forming (Figure 5.1B).

Our computational search discovered all the ways in which cells can communicate with

just two diffusing molecules to form dynamic patterns, including those that have been

experimentally observed. We found that a few ways of communicating, which we re-

fer to as “cellular dialogues”, can generate a large palette of complex, dynamic spatial

patterns such as whirlpools of wavelets and traveling waves of various shapes and ori-

entations. We devised an analytical (pen-and-paper) approach that recapitulates the

simulations and used it to understand why only certain cellular dialogues can sustain

dynamic spatial patterns. We found that cells form dynamic spatial patterns through

a three-stage, “order-fluctuate-settle” process. Starting from a configuration in which

there is no spatial correlation among cells’ gene-expression levels, cells rapidly become

more spatially correlated over time, resulting in self-organized wavelets. This is followed

by a prolonged transient phase in which the wavelets constantly and erratically form

and annihilate each other. Finally, as the wavelets settle down, a dynamic spatial pattern

such as a traveling wave emerges. We show that self-organized dynamic patterns can

still form despite widely varying gene-expression noise, cellular responses to the sensed

molecules, spatial arrangements of cells, and diffusive (random) motions of cells. As a

1https://github.com/YitengDang/MultiCellSim
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theoretical study, we focused on exploring how cells can form dynamic spatial patterns,

rather than explaining any specific biological system. But our computational screen still

uncovered cellular dialogues that are known to generate dynamic spatial patterns in spe-

cific multicellular systems. Our paper ends by suggesting how one can expand our work,

including the open-source software, to identify as-yet-unknown cellular dialogues that

produce known dynamic spatial patterns in multicellular systems.

5.2. RESULTS

5.2.1. COMPUTATIONAL SEARCH FOR CELLULAR DIALOGUES THAT ENABLE

SELF-ORGANIZED PATTERNS

We built a visualization software that simulates all possible ways in which cells can com-

municate — which we call “cellular dialogues” — by secreting, sensing, and responding

to two diffusing molecules (Figure 5.1C). Such cells, which simultaneously secrete and

sense one or more signaling molecules, are ubiquitous in nature [Hart et al. 2014; Youk

and Lim, 2014a; Youk and Lim, 2014b; Chen et al. 2015; Maire and Youk, 2015b]. Our sim-

ulations combine reaction-diffusion equations – describing the concentrations of the

molecules – and a cellular automaton – describing the cells’ gene-expression levels that

are set by the concentrations of the two molecules. We represent a cellular dialogue as a

network diagram that consists of two nodes (one for each molecule) joined by signed ar-

rows, which can be positive (activating) or negative (repressing). A signed arrow denotes

how the sensing of one molecule, represented by the node on which the arrow begins,

increases (for a positive arrow) or decreases (for a negative arrow) the sensing cell’s secre-

tion rate of a molecule that is represented by the node on which the arrow ends (Figure

5.1C). We assume that both molecules diffuse on a faster timescale than the cells can

respond — the two molecules “rapidly” diffuse and reach steady-state concentrations to

which the cells then respond — as is the case in many multicellular systems [Heemskerk

et al., 2019].

We first considered cells that digitally respond to each molecule (as motivated in Chapter

3.1): a cell secretes “molecule-i’ at either a low rate (“OFF” state for molecule-i) or a high

rate (“ON” state for molecule-i). If molecule-j activates (represses) molecule-i, then a cell

becomes ON (OFF) for molecule-i if and only if it senses a concentration of molecule-j

that is above a set threshold concentration. The digital cells also have a reporter gene for

each molecule, which we call genes “1” and “2”, that are also either ON or OFF to reflect

the secretion state of its corresponding molecule (Figure 5.1C – brown and green boxes).

In our simulations, we assigned a distinct color to each of the four states, which are (ON

for gene-1, ON for gene-2), (ON, OFF), (OFF, ON), and (OFF, OFF).
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We began each simulation by randomly assigning the four gene-expression states (i.e.,

four colors) to each cell so that the gene expression levels were spatially uncorrelated.

Thus, the field of cells initially did not exhibit any spatial organization. We quantita-

tively verified this with a “spatial index” metric which is a weighed spatial autocorrela-

tion function that is zero when cells are completely, spatially disorganized and increases

towards one as the cells become more spatially organized (see Equation S5.13 and Fig-

ure S5.4). We then observed how each cell’s state (i.e., four colors) changed over time to

determine whether a spatial pattern formed and, if so, what type of a pattern formed.

For each cellular dialogue, we fixed the values of all parameters (e.g., threshold concen-

trations, secretion rates for each molecule), and then ran large numbers of simulations

with different initial conditions (see Section S5.4.2). We screened a wide range of param-

eter values for every possible cellular dialogue (see Section S5.4.2). We first performed

such a computational search with immobile digital cells that were placed on a regularly

spaced lattice. We will first describe these results in the next sections before explaining

how these results change when we relax the constraints – by randomly displacing cells

so that they no long form a regular lattice, having each cell continuously move, allowing

the Hill coefficient to be any finite value (i.e., analogue instead of digital response), and

including gene-expression noise (Figure 5.1D).

5.2.2. CELLULAR DIALOGUES ENABLE SELF-ORGANIZATION OF WIDE ARRAY

OF DYNAMIC PATTERNS

The computational search revealed a wide variety of dynamic patterns, from never-ending

traveling waves (Figure 5.2A) to complex patterns consisting of wavelets that evolved

over time in an erratic, complex manner (Figure 5.2B). All patterns self-organized from

completely disorganized fields of cells by their ON/OFF-states becoming more spatially

correlated over time (Figure 5.2A–B). The time taken to self-organize widely varied and

depended on the type of pattern formed. For example, if we assume that a gene-expression

change such as an ON-cell becoming an OFF-cell takes one minute – this is one time-

step of a simulation and every cell synchronously changes their ON/OFF states – then

horizontal waves could take nearly six hours to form (Figure 2A) whereas the constantly

changing, complex whirlpool of wavelets would not show any signs of settling into any

pattern that cyclically repeats itself even after a week or longer (Figure 5.2B). Since the

simulations are deterministic for now – we will later add gene-expression noise – once a

simulation reproduces a spatial configuration that it had before, the cell population has

formed a dynamic pattern that periodically repeats itself forever.

The dynamic patterns that we uncovered differed in their shape, complexity, and move-

ments (Figures 5.2C–J, and Section S5.5.1). Among these, the most prominent were recti-
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Figure 5.1: Computationally screening cellular dialogues to find ones that enable dynamic patterns to form.
(A) Pattern formation by cells versus chemicals. (Top) Mechanisms by which an initially disordered field
of a mesoscopic number of cells (∼hundreds to thousands) (left panel) become more ordered through cell-
cell communication (right panel) remain poorly understood, as is the method to analyze this complex self-
organization dynamics. (Bottom) A field of chemicals or a continuum of cells (large number of tightly packed
cells) initially having no pattern (left) can form a pattern (right) without pre-existing morphogens. This is
usually modelled by reaction-diffusion equations and can be understood through the Turing mechanism. (B)
Static versus dynamic patterns. (Top) Static patterns do not change over time. (Bottom) In dynamic patterns,
a structure changes over time without ever stopping (e.g., shown here is a traveling wave). (Caption continued
on next page.)
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Figure 5.1 (previous page): (C) Schematic of cellular dialogues. Brown (molecule 1) and green (molecule 2)
circles are ligands that bind to their cognate receptors on the cell membrane. Ligand-bound receptors trig-
ger intracellular signal transductions that either positively or negatively regulate the production and secretion
of molecules 1 and 2 (molecule 1 can self-promote or self-repress its own secretion while also regulating the
secretion of molecule 2, and vice versa). Bottom row shows graphic representation of cellular dialogues. (D)
Elements that we varied in simulations: cellular dialogues of all possible topologies, the values of the param-
eters for each cellular dialogue, and spatial arrangement of cells. Our study first begins with an infinite Hill
coefficient (i.e., digital response to each of the two signaling molecules) and a regular lattice. After reporting
the outcomes of these simulations, we report the result of relaxing these two constraints and well as other
elements not depicted.

linear traveling waves and spiral waves, both of which have high degrees of spatial order

(Figures 5.2C–F). In the case of traveling waves – which can be oriented horizontally,

vertically, or diagonally (Figures 5.2C–D, and 5.2G) and have a straight or bent shape

(Figures 5.2D–E) – a rigid shape moves across space over time. Since the simulations

were deterministic and the system had periodic boundary conditions, if the simulation

revisits an earlier spatial configuration, then it would periodically and forever repeat the

same dynamics from then on. In the case of traveling waves, this meant that the waves

perpetually propagated, disappearing at one edge of the field and then appearing at the

opposite end. This behavior also applies to patterns that do not propagate over space,

but rather, oscillate in time. In some cases, such oscillations were limited to a few cells

that formed an island (Figure 5.2H) whereas in others, every cell in the field oscillated to-

gether (Figure 5.2I). In particular, an island of cells could oscillate in such a way that indi-

vidual cells oscillated with different periods (Figure 5.2H), causing the entire island, as a

collective entity, to display a complex oscillation with a period larger than four timesteps.

We call this a “complex” oscillation because the simplest oscillation would involve all

cells in the island having the same gene-expression state that oscillates with a period

of at most four timesteps, since a cell can have at most four distinct gene-expression

states (i.e., (ON/OFF, ON/OFF)). Finally, some cellular dialogues yielded temporally non-

repeating, complex patterns consisting of whirlpools of wavelets that evolved over time

in an erratic manner (Figure 5.2J) which, in many cases, transiently existed for tens of

thousands of timesteps before the cells formed temporally repeating, well-defined dy-

namic patterns such as horizontal waves.

5.2.3. COMMON STRUCTURAL ELEMENTS IN CELLULAR DIALOGUES THAT

GENERATE DYNAMIC PATTERNS

The wide array of dynamic patterns that we observed fall into two categories (Figure

5.3A): (1) dynamic temporal patterns, in which cells periodically oscillate over time but

do not propagate information over space (e.g., Figures 5.2H–I), and (2) dynamic spatial

patterns, in which cells propagate information over space in the form of a well-defined
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Figure 5.2: Examples of self-organized dynamic patterns found through computational screening. In all
the figures shown here, a cell (drawn as a circle) can have four colors. Each color represents a distinct gene-
expression state, (gene 1 = ON/OFF, gene 2 = ON/OFF): Black means (ON, ON), red means (ON, OFF), blue
means (OFF, ON), and white means (OFF, OFF). In all the simulations, a field of cells starts with a completely
spatial disordered configuration — there is no correlation between neighboring cells’ gene-expression states
— as exemplified by the leftmost picture shown in (A). (Caption continued on next page.)
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Figure 5.2 (previous page): (A) Traveling wave of horizontal bands. Snapshots of the formation process shown
at different stages of a simulation. Assuming that one timestep in the simulation takes one minute, the clocks
show time passed from noon (beginning of the simulation). (B) Complex pool of multiple wavelets formed,
starting with a spatially disorganized field of cells. Snapshots at different stages of the simulation are shown.
Assuming that one timestep represents one minute, the clock and the days elapsed indicate at which timesteps
in the simulation the snapshots are taken. (C–J) Each filmstrip shows three non-contiguous snapshots of a
moving, dynamic pattern that formed, starting from a spatially disorganized configuration (not shown, see
examples in the first snapshots in A). Where shown, the arrows represent the direction of travel. The dynamic
patterns are: (C) a single traveling horizontal band, (D) traveling vertical bands, (E) a traveling zig-zag band, (F)
a spiral wave, (G) traveling diagonal bands, (H) a small island of cells (enclosed in the blue hexagon) oscillat-
ing over time while all cells outside the island remain static, (I) every cell oscillates between red and blue with
period 2, and (J) seemingly chaotic, never-ending dynamics in which multiple wavelets form and meet and an-
nihilate each other, with the pool of wavelets constantly evolving and never repeating the same configuration
throughout the simulation.

shape (e.g., a wave front) that moves from one part of the field to another, often from

one edge to the other edge of the field (e.g., Figures 5.2C–F). There are 44 distinct cellu-

lar dialogues in total (see Section S5.4.1) that we could group into three categories: (1)

those that cannot form any dynamic patterns, (2) those that can form only dynamic tem-

poral patterns, and (3) those that can form both dynamic spatial patterns and dynamic

temporal patterns. To categorize them, we developed a method to deduce, for each cel-

lular dialogue, all possible ways that a cell’s state (ON/OFF, ON/OFF) can change over

time. Concretely, we constructed a directed graph for each cellular dialogue (see Section

S5.5.2) which has four nodes — one for each gene-expression state — that are connected

by edges with directions that represent the allowed transitions between the nodes. We

deduced how some of the directed edges become inaccessible while others become ac-

cessible as we change the cellular dialogue’s parameter values (Figure S5.7). Then, fol-

lowing the directed edges from node to node yields all possible ways that a cell’s gene

expression can change over time. By looking for graphs that contained cyclic paths, we

identified cellular dialogues and ranges of their parameter values that can potentially

sustain dynamic patterns if they were to form. Since self-organization of dynamic pat-

terns can only occur for parameter values that can sustain dynamic patterns in the first

place, we only had to check these values in simulations to see if they led to dynamic

patterns. This method thus vastly reduced the range of parameter values that we had to

screen. For each cellular dialogue, we generated a large set of random parameters and

ran many simulations (see S5.4.2), each starting with a different and randomly gener-

ated gene-expression pattern. We checked whether each of these simulations yielded a

dynamic pattern using automated methods (see Section S5.4.2).

We discovered that cellular dialogues, when grouped into the three categories men-

tioned above, form distinct tree structures (Figures 5.3B–D) in which a node denotes

a particular cellular dialogue and an edge connects two nodes if one node (cellular di-
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alogue) comes from the other node (another cellular dialogue) by adding or removing

one regulatory interaction. The fact that tree structures emerged, which link the differ-

ent cellular dialogues together if they form the same type of patterns, suggests that there

may be common elements in the cellular dialogues that belong to the same tree. Indeed,

we found that all ten cellular dialogues (Figure 5.3B) that can only generate static config-

urations, and no dynamic patterns at all, consist of two molecules that do not mutually

regulate each other and also do not have any self-repressions. We also found that twenty-

six cellular dialogues can produce dynamic temporal patterns but not dynamic spatial

patterns (Figure 5.3C). Their common feature is that they all contain a self-repression

and/or a mutual feedback of the same sign (i.e., both molecules either activate or re-

press each other’s production). The sole exception to this rule, within this family of

cellular dialogues, is cellular dialogue 14 (Figure 5.3C). Cellular dialogue 14 consists of

an activator-inhibitor pair, whereby one molecule promotes the production of the sec-

ond molecule, which in turn represses the production of the first molecule. Here, nei-

ther molecule regulates its own production. However, all eight cellular dialogues that

one can obtain from cellular dialogue 14 by adding one or more self-interactions can

yield dynamic spatial patterns, in addition to dynamic temporal patterns (Figure 5.3D).

We could further divide these eight cellular dialogues into two classes: ones that con-

tain only self-repressions (Figure 5.3D – blue boxes) and ones that contain at least one

self-activation (Figure 5.3D – red boxes). The three cellular dialogues that contain only

self-repressions produce dynamic spatial patterns in which the moving shape periodi-

cally changes its gene-expression composition (Figure S5.6). In contrast, the five cellular

dialogues that contain at least one self-activation yield dynamic spatial patterns such

as traveling waves (Figures 5.2C–G) in which the pattern moves across the field of cells

without changing in shape or composition.

GROUPING CELLULAR DIALOGUES BASED ON HOW FAST THEY FORM PATTERNS IS EQUIVA-

LENT TO GROUPING THEM BASED ON THEIR SHARED STRUCTURAL ELEMENTS

We discovered that if we analyze the typical times or the longest time that a cellular dia-

logue takes to form a pattern (static configuration or a dynamic pattern), and then group

the cellular dialogues based on those times, then we would identify the same three cat-

egories of cellular dialogues (Figure 5.3E and Figure S5.1). Specifically, all eight cellular

dialogues that can form dynamic spatial patterns stood out as taking the longest times

to form patterns compared to the other cellular dialogues, by at least about 100-fold

longer durations (Figure 5.3E – circles). As we will later discuss, we found that these

long self-organization times (∼1 week if one time-step represents one minute) are due

to complex dynamics that is intrinsic to the pattern-formation process. We found that

all cellular dialogues that cannot form dynamic spatial patterns but do form dynamic
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temporal patterns take less times to form patterns, by at least a 100-fold less, than the

ones that form dynamic spatial patterns (Figure 5.3E – triangles). Finally, we discovered

that the cellular dialogues that cannot form any dynamic patterns and thus only form

static configurations – some of which are highly organized patterns – require the least

amounts of time to form these configurations (Figure 5.3E – squares).

5.2.4. ANALYTIC FRAMEWORK EXPLAINS HOW CELLS COLLECTIVELY SUS-

TAIN DYNAMIC SPATIAL PATTERNS

To explain why certain cellular dialogues enable cells to sustain the dynamic spatial pat-

terns after having formed them, we developed a theory that does not use simulations

and still correctly predicts when dynamic spatial patterns occur and explains how the

cells sustain them (Figures 5.4A–C). The key idea behind this analytical approach is that

many dynamic spatial patterns, from the complex whirlpools of wavelets to spiral waves,

share a common structure: one can build diverse dynamic spatial patterns by gluing to-

gether multiple rectilinear waves (i.e., horizontal, vertical, and bent waves). Thus, if we

can understand how cells can sustain rectilinear waves, we can piece them together to

understand the more complex shapes that are built out of them. Each rectilinear wave

has six distinct layers of gene-expression states (Figure 5.4A). Three of the layers – “front”,

“middle”, and “back” (Figure 5.4A – red, black, blue cells) – constitute the wave itself and

continuously move forward while the other three layers – “exterior front”, “exterior” and

“exterior back” – consist of all the other cells. After one timestep, each layer adopts the

identity of the layer just behind it (e.g., the exterior-front layer, which is just in front of

the front layer, becomes the front layer) (Figure 5.4C). This must occur at every timestep

in order for the wave to continuously propagate, meaning that the concentrations of the

two molecules within each layer must coordinately change so that the layers can syn-

chronously move forward. We developed a method to estimate the concentrations of

the molecules in each layer (Figure 5.4B and Section S5.5.3).

Using the analytical approach, we derived six mathematical inequalities, one for each

layer, that must all be satisfied in order for the concentrations of the two molecules to

coordinately change to enable the rectilinear wave to propagate (Figure 5.4C and Sec-

tion S5.5.3). The inequalities impose relationships among the different parameters of

the cellular dialogues, such as the maximal secretion rates and sensing thresholds (Fig-

ure 5.1D). By solving these inequalities, we found that only five cellular dialogues – the

exact same ones that we computationally identified – can satisfy all six inequalities and

thus generate non-oscillatory dynamic spatial patterns (i.e., the ones that do not involve

concurrent dynamic temporal patterns) (Figure 5.3D – red boxes). In accordance with

the computational screening, the analytical approach revealed that only two types of
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Figure 5.3: Computational search revealed tree structures that group cellular dialogues based on their abil-
ity to generate either static patterns, dynamic temporal patterns, or dynamic spatial patterns. (A) Two
classes of dynamic patterns. (Top): Dynamic temporal patterns repeat themselves over time without trans-
mitting information across space. (Bottom): Dynamic spatial patterns involve cells that transmit information
over space through a coherent structure that moves across the field. (Caption continued on next page.)
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Figure 5.3 (previous page): (B–D) Tree diagrams show a full classification of all 44 unique, non-trivial cellu-
lar dialogues into three distinct classes. In each tree diagram, a cellular dialogue is a leaf (box) that is joined
by branches to other cellular dialogues. As one moves from one leaf to the next, an edge is either removed
or added to the cellular dialogue. (B) Tree diagram showing all cellular dialogues that cannot generate any
dynamic patterns. All cellular dialogues here lack mutual interactions and self-repressions. (C) Tree diagram
showing all cellular dialogues that can generate dynamic temporal patterns but not dynamic spatial patterns.
These all have either a self-repression (red boxes), a mutual interaction of the same sign (blue boxes), or both
(purple boxes). Cellular dialogue 14 is an exception — it has mutual interactions of different signs and no
self-interactions. (D) Tree diagram showing all cellular dialogues that can generate dynamic spatial patterns
— these can all also generate dynamic temporal patterns. These are all generated by adding at least one addi-
tional self-interaction to cellular dialogue 14. Cellular dialogues in the five red boxes have at least one positive
feedback loop, and can generate non-oscillatory dynamic spatial patterns (e.g., traveling waves). Cellular dia-
logues in the blue boxes have only negative self-interactions and produce dynamic spatial patterns but always
with a concurrent dynamic temporal pattern (e.g. a traveling wave where the cells oscillate simultaneously)
(see Figure S5.6 for examples). (E) The maximum observed simulation time is a metric that naturally separates
the three classes of cellular dialogues (B–D) (see Figure S5.1 for other metrics). A node represents a cellular
dialogue and the node’s shape represents the type of cellular dialogue (one of the three (B–D)). A node’s color
indicates the longest observed simulation time among a large set of simulations that were performed with
different parameters.

rectilinear waves are possible, each differing by which gene-expression state is assigned

to each layer: all cellular dialogues with cellular dialogue 15 as the common motif (i.e.,

molecule-1 promotes its own secretion) generate one type of rectilinear wave (Figure

5.4D – top row) while the others, having cellular dialogue 19 as the common motif (i.e.,

molecule-2 promotes its own secretion), generate the other type of rectilinear wave (Fig-

ure 5.4D – bottom row). As an exception, cellular dialogue 33 can generate both types of

traveling waves because nested in it are both cellular dialogues 15 and 19 as subgraphs.

To understand why only these five cellular dialogues (Figure 5.4D) can generate dynamic

spatial patterns, we considered the directed-graph representation of the cellular dynam-

ics that we introduced earlier (Section S5.5.2). For a wave, the directed graph must con-

tain a cyclic path that goes through all four nodes – one node for each gene-expression

state – since an exterior cell must eventually become a front-layer cell, then a middle-

layer cell, then a back-layer cell, and then finally an exterior cell again (Figure 5.4C).

Cellular dialogue 14, which is the backbone of all five cellular dialogues that generate dy-

namic spatial patterns (Figure 5.3D – red boxes), can potentially produce a cyclic graph

with these four nodes (Figure 5.4E – left panel) as long as they permit parameter val-

ues that allow each cell to cyclically traverse through the nodes. This is because start-

ing with a gene-expression state of (1, 0) – where the 1 means ON-state for molecule-1

and the 0 means OFF-state for molecule-2 – may lead to (1, 1) due to molecule-1 pro-

moting molecule-2 secretion, which then may lead to (0, 1) due to molecule-2 repress-

ing molecule-1 secretion, which then may lead to (0, 0) due to there being not enough

molecule-1 for promoting molecule-2 secretion, and finally, this may lead back to the
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starting state, (1, 0), due to there being not enough molecule-2 for inhibiting molecule-1

secretion. However, such a cycle through the four nodes alone is insufficient for sus-

taining a wave because the exterior cells must remain as exterior cells unless they are

adjacent to the front or back layer (Figure 5.4C). But if the exterior cells have state (0,

0) and the front-layer cells have state (1, 0), then the exterior cells near the front layer

(i.e., the exterior-front cells) would sense more molecule-1 than the exterior cells that

are further away from the wave. Modifying cellular dialogue 14 by having molecule-1

promoting its own secretion, as in cellular dialogue 15, would create the possibility of

the exterior-front cells activating molecule-1 secretion and thus transition to (1,0) at the

next timestep, thereby becoming a front-layer whereas the exterior-layer cells remain in

the (0, 0) state (Figure 5.4E – top right). A similar reasoning also yields an analogous

result for cellular dialogue 19 (Figure 5.4E – bottom right).

To realize the qualitative scenario described above, a cellular dialogue must contain pa-

rameter values that satisfy all six inequalities that we derived (Figure 5.4C). We found

that the five cellular dialogues indeed admit such parameter values and that these val-

ues — obtained through the analytical approach — nearly perfectly match those found

in the computational screen (Figures S5.9–S5.10). We can represent these parameter val-

ues as spider charts (Figure 5.4F), which show that each of the five cellular dialogues can

realize dynamic spatial patterns with parameter values that vary over many orders of

magnitude. The spider charts also geometrically reveal a common feature among the

five cellular dialogues: the threshold concentration must be low for a molecule that pro-

motes its own secretion (Figure 5.4F – note the inward indentations in the red spider

webs along the axes that represent the threshold concentrations). This makes sense be-

cause, for all types of rectilinear waves (Figure 5.4D), the exterior-front cells need to turn

on the secretion of a molecule that promotes its own secretion by sensing it from the

other layers and having a low activation threshold for that molecule would facilitate this.

Taken together, our analytical approach unveiled how cells can sustain dynamic spatial

patterns.

5.2.5. SELF-ORGANIZATION OCCURS THROUGH A THREE-STAGE, “ORDER-

FLUCTUATE-SETTLE” MECHANISM

We now turn to the self-organization process itself. Given that many of the dynamic spa-

tial patterns are traveling waves and that more complex dynamic spatial patterns can be

built from gluing together multiple rectilinear waves, we focused on traveling waves and

the core features of their self-organization process. Our simulations revealed that travel-

ing waves form in three stages (Figure 5.5A). First, a field of cells whose gene-expression

levels form a completely disorganized spatial configuration rapidly becomes more spa-
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Figure 5.4: Analytic framework predicts and explains how cells can sustain dynamic spatial patterns. (A–C)
Three-step overview of an analytic (pen-and-paper) approach to understanding the simulations (see Section
S5.5.3). (A) Step 1: Decompose straight (top) and bent (bottom) waves into distinct layers of cells. Cells of the
same layer have the same gene-expression state. (Caption continued on next page.)
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Figure 5.4 (previous page): (B) Step 2: Estimate the total concentrations of molecules that a cell senses by
exactly calculating the portions of those concentrations that are due to the cell itself and its nearest neigh-
bors, and by approximating the portions of the total concentrations that are due to further-away cells, and by
approximating the portions of the total concentrations that are due to further-away cells. (C) Step 3: (right) Di-
rected graph-representation showing how a cell must transition to distinct layers shown in (A) at each timestep,
which is explained by six mathematical inequalities that are derived through step 2 (see Section S5.5.3). (D)
Numerically solving the six inequalities in (C) shows that only two types of waves, shown here, are possible and
which cellular dialogues can produce them (cellular dialogues 15, 36, and 33 for wave type 1; cellular dialogues
19, 33, and 34 for wave type 2). (E) Adding self-activation to cellular dialogue 14 yields, in the left column,
cellular dialogues 15 and 19. Directed graph-representation showing the gene-expression transition of a cell
for each cellular dialogue is shown (see Section S5.5.2). (F) Parameter values that allow for sustaining of recti-
linear waves, when represented as red points, form a dense region (red region) as shown in these spider charts.
These parameter values satisfy the six inequalities derived by the analytic theory (C) (see Figure S5.10C for a di-
rect comparison with parameter values found purely through computational search). The spider charts show
the following parameters: threshold concentrations K (i j ) for each molecular interaction and the maximum

secretion rate C
( j )
ON for each of the two molecules.

tially ordered, meaning that the gene-expression levels of neighboring cells tend to be-

come more correlated over time. To quantify the degree of spatial organization, we used

a “spatial index” — a metric from our previous work whose value is zero for a completely

disorganized spatial configuration and increases towards one as the spatial configura-

tion becomes more organized (see Equation S5.13 and Figure 5.5B – left panel’s inset)

[Maire & Youk, 2015a; Olimpio et al., 2018].

In the following discussion, we consider one timestep to represent one minute and ex-

press the time in minutes or hours. Then this rapid spatial ordering typically takes less

than an hour (Figure 5.5A – green arrow and Figure 5.5B – left panel). At the end of this

process, the cells have formed multiple whirlpools of wavelets (Figure 5.5A – frame at

0.33 hours). Thus begins the second stage of self-organization: long-lived complex dy-

namics — lasting for days or weeks — in which multiple wavelets travel through the field

of cells, meeting and annihilating each other, all the while as the cells form new wavelets

to replace the destroyed ones (Figure 5.5A – filmstrip from 0.33 hours to 55 hours). Dur-

ing this days-long dynamics, the spatial organization neither stably increases nor de-

creases — the spatial index erratically (unpredictably) fluctuates over time (Figure 5.5B –

left panel; Figure S5.3), which we can see by plotting the Fano factor for the spatial index

over time (Figure 5.5C – left panel and Section S5.4.1). The spatial index erratically fluc-

tuating represents multiple wavelets forming and annihilating at various, seemingly ran-

dom locations and wavelets unpredictably morphing over time, all despite the fact that

the simulations are completely deterministic. Crucially, we verified that the same spa-

tial configuration never repeats itself throughout the days-long dynamics which could,

in fact, last for weeks or longer if we do not terminate the simulations (i.e., some fields

of cells never reach a steady-state and never attain a dynamic pattern within the allotted
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time for the simulations). Such erratic, complex dynamics is followed by the third and

final stage of the self-organization process: the wavelets die down and as this occurs, a

more rigid, spatially ordered structure that travels as a wave emerges (Figure 5.5A – last

frame). During this final process, the spatial index’s fluctuations rapidly decay, typically

over a few hours. The system then settles into a regular dynamic pattern that repeats

itself over time. This is marked by the sudden disappearance of the fluctuations in the

spatial index (Figure 5.5B – left figure). This settling process takes a few minutes to sev-

eral hours (Figure 5.5A – purple arrow and Figure 5.5B – left panel). Leading up to this

last stage, there are no clear indications that a well-organized regular shape will emerge.

This highlights the erratic, complex nature of the self-organization dynamics.

The spatial index, one for each gene, represents a macrostate variable — a single num-

ber that measures how much spatial correlation there is in the expression of a particular

gene (see Section S5.4.1). Another macrostate variable is the fraction of cells that have

the same gene-expression level (i.e., fractions of cells that have gene-i in the ON-state).

There are two such fractions, one for each gene. During the self-organization process,

these two fractions erratically fluctuate over time — just like the spatial indices — as

the wavelets constantly and erratically change their shapes while meeting and annihi-

lating each other for days. Afterwards, the two fractions’ fluctuations quickly decay over

time — the decay takes a few hours whereas the whole self-organization process takes

days — and eventually settle at steady-state values (Figure 5.5B–C: right panel and Fig-

ure S5.3). When we view the temporal change of these two fractions as a trajectory in

a plane – a phase space — defined by the two fractions, we see an irregular orbit that

eventually stops at a single point (Figure 5.5D – black circle). Specifically, a point in the

two-dimensional phase space — representing the values of the two fractions at a given

time – erratically moves within a restricted region of the plane. If we follow the trajectory

with a pencil, we would obtain a jagged curve that densely and nearly entirely fills the

whole space within the restricted region that encloses the single point where the trajec-

tory terminates.

The phase-space trajectory described above suggests the following analogy for the self-

organization dynamics (Figure 5.5E): a ball quickly rolls down a steep side of a large

bowl, speeding up as it does so, until it reaches the bowl’s flat bottom. This is the first

stage of self-organization in which the decreasing height represents more spatial order-

ing (Figure 5.5E – green arrow). After reaching the frictionless, flat circular bottom, the

ball rapidly bounces off the side walls, like a billiard ball, without ever losing its speed

(Figure 5.5E – brown dashed lines). This bouncing ball, which would produce seemingly

erratic yet deterministic motion — as Newton’s laws of motion are deterministic — rep-

resents the second stage of self-organization in which multiple whirlpools of wavelets
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are unpredictably created and destroyed. Eventually, the ball finds the small hole, falls

into it, and then spirals its way downwards along the side walls of the trench through the

hole until it reaches the bottom of the trench (Figure 5.5E – purple arrow). This would

represent the third and the final stage of the self-organization. The shape of the bowl

and the location of the trench would be determined by the parameters of the cellular

dialogue.

In each of the five cellular dialogues that can yield dynamic spatial patterns, we found

that, for parameter values that enable dynamic pattern formations, approximately 30%

of the initially disorganized spatial-configurations successfully self-organized traveling

waves (Figure 5.5F). Moreover, our simulations and the analytical approach revealed that

cells can have arbitrarily high parameter values and still form traveling waves, as long as

the secretion rates and threshold concentrations are appropriately tuned (Figures S5.10

and S5.12). Our analytical framework presents an optimization strategy for ensuring

that cells form traveling waves for the largest possible set of parameter values (Figure

S5.11). This strategy depends on balancing how much a cell communicates with itself by

capturing back the molecules that it had just secreted (self-communication) with how

much a cell communicates with the other cells by sending its secreted molecules to them

(neighbor-communication). In short, we found that when the cells are sparsely packed,

there is not enough neighbor-communication for sustaining traveling waves. On the

other hand, when the cells are densely packed, then cells cannot cycle through a set of

gene-expression states — a requirement for dynamic patterns such as waves — because

the signaling molecules quickly reach saturating concentrations rather than undergo-

ing the necessary cycles of decreases and increases. This leaves us with intermediate,

“goldilocks” density of cells as being ideal for forming and sustaining waves and dynamic

spatial patterns (Figure S5.11B). Furthermore, for all five cellular dialogues, we discov-

ered that the probability of forming a traveling wave at a given time is well described by

an exponential distribution (Figure 5.5G and Figure S5.8A), with a characteristic decay

time of thousands of timesteps (i.e., tens of hours if one timestep is one minute). This

strongly suggests that traveling wave formation is a memoryless process whereby at each

timestep, the probability that the next timestep yields a traveling wave remains the same

regardless of at which timestep the simulation is at. This reflects the fact that watching

the simulations that yield a dynamic spatial pattern does not give the observer a sense

that the cells are getting anywhere closer to forming a dynamic spatial pattern as time

passes (Figures S5.8B–D).
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Figure 5.5: Three-step, “order-fluctuate-settle” process leads to formation of dynamic spatial patterns. (A)
Snapshots of a simulation showing the three stages of a traveling-wave formation – the three stages are de-
scribed above the filmstrip. Assuming that one time-step of a simulation represents one minute, indicated
above each snapshot is the elapsed time in hours. Color scheme for cells is the same as in Figure 5.2. (Caption
continued on next page.)
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Figure 5.5 (previous page): (B) Two macroscopic parameters — the spatial index and the fractions of cells with
a particular gene ON — plotted as a function of time for the wave-forming simulation shown in (A). One minute
represents one timestep. (Left panel) The spatial index — with magnitude between zero and one — measures
the degree of spatial organization (zero means complete disorder, i.e. no spatial correlation in gene-expression
among cells, and increasing values correspond to more spatial organization). Inset shows the spatial index
rapidly increasing for the first twenty timesteps. Spatial index for gene 1 (red) and gene 2 (blue). (Right panel)
Fractions of cells with gene 1 ON (red) and of gene 2 ON (blue) for a typical wave-formation process. Inset
shows the first twenty timesteps. (C) For data in (B) and genes 1 (red) and 2 (blue), we used a moving window
to compute the moving coefficient of variations in the spatial index (left panel) and in the fractions of cells
with the specified gene ON (see Section S5.4.1). (D) For a typical simulation that self-organizes into a traveling
wave, we plot the trajectory in phase space formed by the fractions of cells with gene 1 ON and gene 2 ON. The
trajectory begins at the square (first timestep of the simulation) and terminates at the circle (last timestep of
the simulation). (E) Analogy for the three-stage self-organization process — a billiard ball rolls down a bowl,
bounces around on the flat circular bottom, and then fall through a tunnel after finding a small hole drilled
into the circular bottom. (F) Probability of forming a traveling wave for each of the five cellular dialogues (de-
tailed results in Figure S5.12). Violin plots showing the non-parametric kernel density (colored distributions),
together with the median (white circle), interquartile range (thick vertical line) and 1.5x interquartile range
(thin vertical line). Results are obtained by running 500 simulations for each of the parameter sets for which at
least one traveling wave formed in the computational screening (see Section S5.4.2). Individual dots represent
probabilities for individual parameter sets. (G) Distributions of the time taken to form a traveling waves for
each of the five cellular dialogues that enable cells to form dynamic spatial patterns (detailed results in Figure
S5.8).

5.2.6. DYNAMIC PATTERNS WITH MORE COMPLEX ELEMENTS

We next extended our investigation by relaxing the two main constraints in the simu-

lations — having an infinite Hill coefficient and cells on a regular lattice. We modified

the simulations by separately adding four elements (Figure 5.6A and Section S5.4.3): (1)

stochastic response to the signaling molecules (Figure 5.6A – top left), (2) a sigmoidal

response function characterized by a finite Hill coefficient (i.e., cells no longer digitally

respond to the signaling molecules) (Figure 5.6A – top right), (3) randomized locations

of cells instead of each cell residing on a regular lattice (Figure 5.6A – bottom left), and

(4) random (diffusive) motion of each cell (Figure 5.6A – bottom right). We tuned each

element and asked two questions: (1) Can the cells still form traveling waves if they start

with a completely disordered spatial configuration? (Figure 5.6B – top) — this probes

the self-organization capability — and (2) can the cells still sustain traveling waves af-

ter forming them? (Figure 5.6B – bottom) — this investigates whether dynamic spatial

patterns can be sustained once formed. In general, we found that cells could still form a

wide range of dynamic spatial patterns with the four additional elements (Figure 5.6C).

For example, we discovered that cells under the influence of a moderate noise could

form a band that travels as a wave despite a number of cells stochastically obtaining the

“wrong” (incoherent) gene-expression state. In this case, the wave thus propagates while

stochastically evolving (Figure 5.6C – top left). As another example, we discovered that

even when we randomly arrange cells in space, instead of on a regular lattice, the cells

could still form never-ending, complex wavelets (Figure 5.6C – bottom left).
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By running many simulations for each of the four complex elements, we discovered that

the dynamic spatial patterns that we previously observed, on a regular lattice with an in-

finite Hill coefficient (Figure 5.2), still formed as long as the amount of the deviation in-

troduced by the four elements, relative to the regularity of the lattice and the infinite Hill

coefficient, was non-negligible but not too large (Figure 5.6D). For instance, we found

that, with a moderate noise, dynamic spatial patterns continued to form and persist

(Figure 5.6D–E – top left and Figure S5.5). The probability that an initially disordered

configuration morphed into a traveling wave became higher with moderate noise, com-

pared to not having any or low noise, indicating that noise can drive the system towards

more ordered states — a phenomenon also observed for static patterns in an earlier work

[Olimpio et al., 2018]. To account for this observation, we extended our theory, which

we developed for explaining wave propagation without noise (Figures 4A–C), to now in-

clude noisy gene-expression. Using this extended theory, we calculated the probability

that a wave, after forming, “survives” for a given amount of time. This probability closely

matched the actual fraction of simulations in which waves survived (Figure S5.13 and

Section S5.5.4).

By varying the Hill coefficient over a wide range, we discovered that dynamic patterns

can form for finite Hill coefficients of values ∼4 or higher (Figure 5.6D – top right and

Figure S5.5). However, these did not typically include “pure” traveling waves that neatly

decompose into the previously identified layers. Moreover, an already-formed traveling

wave — as in the case of a simulation that starts with a wave — could persist for Hill

coefficients of values down to ∼3 (Figure 5.6E – top right). These results indicate that

a finite Hill coefficient is mainly detrimental to the self-organization of traveling waves

whereas it is less detrimental to the cells’ ability to sustain a traveling wave once it is

formed. With a Monte Carlo algorithm that randomly displaces the cells and quantifies

the amount of resulting “lattice disorder” (see Section S5.4.3), we found that dynamic

spatial patterns still formed and persisted even with a high degree of spatial disorder

(Figures 5.6D–E – bottom left and Figure S5.10). Even with saturating amounts of spatial

disorder, we still observed self-organized wavelets that propagated, albeit with a lesser

degree of regularity than in a regular lattice (Figure 5.6C – bottom left). When we allowed

the cells to diffusively move — we tuned the cells’ motility by adjusting the diffusivity of

their Brownian motion (see Section S5.4.3) — we found that large-scale, uncoordinated

motion of the cells prevented any kind of dynamic spatial patterns from stably prop-

agating, as large variations between the local environments of individual cells tended

to diminish the cells’ ability to spatially propagate information (Figure 5.6D – bottom

right). However, we found that motile cells could still propagate waves, once formed,

for an extended amount of time before the wave disintegrated even when the cells had
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a high degree of diffusive motion (Figure 5.6E – bottom right). Together, these results

strongly suggest that diffusively moving cells can sustain traveling waves as long as the

waves travel sufficiently rapidly (i.e., compared to the cells’ average speed).

We also studied two more complex elements. First, we considered the influence of a

spatial gradient of parameter values on traveling-wave formation (see Section S5.4.3).

Researchers have suggested that spatial gradients of parameter values can influence the

orientation of Turing patterns such as stripes [Hiscock & Megason, 2015]. Similarly, we

observed that a spatially varying parameter, having a simple step-function profile over

space, can influence the direction in which the traveling waves moved after forming: the

waves tended to align perpendicularly to the gradient (Figure S5.5). Second, whereas un-

til now the cells integrated the two signals with an AND-logic scheme — both molecules

were required for activating or repressing gene expression — we repeated the compu-

tational search (Figure 5.1D) but now with an OR-logic scheme in which only one of

the molecules is required for activation or repression of a gene (see Section S5.4.1). We

found that the OR-logic scheme yields exactly the same groupings of cellular dialogues

as in the AND-logic scheme in terms of the three classes of patterns that they generate –

static, dynamic temporal, and dynamic spatial patterns (Figure S5.2). But we discovered

that the OR-logic scheme produces a different “wave structure” (Figure 5.4D) than the

AND-logic scheme (Figure S5.2).

5.3. DISCUSSION
The dynamic-pattern forming cellular dialogues that we identified include some that

have been experimentally observed to yield patterns. They all have interlocked pos-

itive and negative feedbacks (Figure 5.3D). Researchers have found that, without any

cell-cell communication, such interlocked feedbacks can cause gene-expression levels

to robustly oscillate temporally [Stricker et al., 2008, Tsai et al., 2008, Li et al., 2017]. Re-

searchers have also synthetically engineered a quorum-sensing gene circuit resembling

cellular dialogue 20 (Figure 5.3D) and observed that the cells’ gene-expression levels syn-

chronously oscillate over time and, under certain conditions, spontaneously form trav-

eling waves [Danino et al., 2010]. More generally, the activator-inhibitor structure of cel-

lular dialogue 15 is qualitatively similar to the structure of the FitzHugh-Nagumo (FHN)

model, which describes excitable systems such as cells whose biomolecule concentra-

tions oscillate over time and/or form traveling waves [Gelens et al., 2014; Sgro et al., 2015;

Hubaud et al., 2017]. Cellular dialogue 15 has an activating molecule that promotes its

own production and an indirect negative feedback through the second molecule. This

indirect negative feedback is analogous to the slow repression in the FHN model. Sim-

ilarly, the interlocked positive-negative feedback loops of the dynamic-pattern forming
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Figure 5.6: Dynamic spatial patterns in an extended model with more complex elements of cell-cell com-
munication. (A) Schematic of four additional, more complex elements that we added to our computational
screen. (B) We examined two features with the elements in (A): (Top) Can a disorganized field of cells still self-
organize dynamic spatial patterns? (Bottom) Starting with a traveling wave — since it is the most ubiquitous
form of dynamic spatial patterns — can the cells sustain it? (C) Examples of dynamic spatial patterns formed
for each of the elements shown in (A). Colored boxes that enclose the filmstrips correspond to the colors used
for each element shown in (A). (Caption continued on next page.)
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Figure 5.6 (previous page): (D) Fraction of simulations that form a dynamic pattern as a function of the devia-
tion from the more idealized setting — cells placed on a regular lattice and responding digitally with an infinite
Hill coefficient — in which the results for Figures 5.1-5.5 were reported. Four colored boxes, with each color
corresponding to colored box in (A) that shows the modified element in the simulations. For each data point,
we ran a large set of simulations with a fixed set of initial conditions as we varied the parameter controlling
the deviation from our original model, and classified their final states (see Figure S5.5 for a details on finite
Hill coefficient and noise). All results here are for cellular dialogue 15. (E) Fraction of simulations with cellular
dialogue 15 that can sustain a traveling wave for at least one full period after starting with a traveling wave. We
took parameter values for which the simulations with simpler elements (i.e., infinite Hill coefficient and cells
on a regular lattice) can propagate traveling waves.

cellular dialogues resemble the activator-inhibitor systems that generate Turing patterns

[Kondo & Miura, 2010] and resemble the two-gene networks that can generate Turing

patterns [Scholes et al., 2019]. But the cells in our simulations do not generate Tur-

ing patterns such as stripes or spots of fixed sizes, likely due the large separation of

timescales between molecular and gene-expression dynamics in our simulations.

Here we focused on cellular dialogues with two molecules and the two genes that they

control. But our software can easily be modified to include multiple — more than two

— extracellular molecules and genes as well as arbitrary regulations of those genes (as

showcased by our inclusion of finite Hill coefficients). Such extensions would allow one

to explore more complex ways that cellular dialogues can mediate dynamic-pattern for-

mations. These extensions, our analytical method for analyzing the simulations, and

our results on two-molecule cellular dialogues may provide insights on poorly under-

stood systems in which multiple signaling molecules interact with each other. For many

biological systems, the regulatory links among the various molecular players remain un-

known (Figure 5.7). For example, researchers have found that three signaling molecules

— Fgf, Notch and Wnt — regulate one another during somite formations. But how Wnt

and Notch regulate each other so that their levels coordinately oscillate over time re-

mains unknown (Figure 5.7A) [Oates et al., 2012; Harima & Kageyama, 2013; Sonnen et

al., 2017]. One may address this question by modifying our software to include three-

molecule cellular dialogues and then applying our analysis method to analyze those

simulations. Doing so may also help in identifying, in stem cells, the as-yet unknown

regulatory links among Bmp, Wnt, and Nodal that lead to self-organized spatiotem-

poral waves (Figure 7B) [Chhabra et al., 2019]. In the Arabidopsis Thaliana leaves, the

circadian clocks of individual cells may be synchronized through self-organized travel-

ing waves [Wenden et al., 2012; Gould et al., 2018] (Figure 5.7C). While these waves are

known to occur through interactions between cells on a regular lattice, the exact inter-

action mechanism remains unknown [Greenwood et al., 2019]. Finally, in planaria —

flatworms that regenerate their bodies after they are cut into pieces — a self-organized
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Wnt gradient specifies where the tail reforms after it is cut. Researchers believe that an

as-yet unidentified signaling molecule may interact with Wnt in a mutually antagonistic

way to indicate where the head should reform after it is excised (Figure 5.7D) [Stücke-

mann et al., 2017]. Thus, our results on two-molecule cellular dialogues may provide

insights into this system.

Our work revealed that complex, erratic dynamics is integral to the cellular dialogues

enalbing dynamic spatial patterns. Researchers have experimentally observed irregular,

complex heart beats during ventricular fibrillations [Ten Tusscher & Panfilov, 2006; Qu

et al., 2014] and turbulent flows of cytoskeletal fluids [Giomi, 2015] and fluids of Min

proteins (MinC, MinD, and MinE) from E. coli lysates that form patterns on a petri dish

[Halatek & Frey, 2018]. Our work expands this repertoire to include pattern formations

through cellular dialogues. Such complex spatial-patterning dynamics may be difficult

to observe in experiments because genetic or developmental programs might be trig-

gered and “take over” the pattern-forming dynamics before the cells had enough time

to exhibit the kind of prolonged, erratic dynamics that we uncovered here. For exam-

ple, before a pattern finalizes, some of the cells in the tissue or an embryo may turn on

a different developmental program such as those that lead to cavitation in parts of the

tissue or some of the cells to collectively migrate. Consequently, cells may not have the

time to exhibit the prolonged complex dynamics for a sufficiently long enough time for

us to experimentally distinguish it from a short-lived, transient dynamics. Moreover, an-

other experimental challenge to observing the prolonged complex dynamics is that one

must measure gene-expression levels of every cell in a tissue or an embryo with suffi-

ciently high temporal and spatial resolutions, and do so continuously for a sufficiently

long time. With these difficulties in mind, a plate of natural or synthetic cells that use

two-molecule cellular dialogues — rather than a full embryo — may allow us to fully

observe the complex dynamics using time-lapse microscopy. It may also be interesting

to interpret and analyze our work in the context of complex systems theory [Bar-Yam,

2003]. Doing so may link our findings to those of non-living chemical systems that self-

organize patterns [Nicolis & Prigogine, 1977].

S5.4. METHODS

S5.4.1. DETAILED DESCRIPTION OF OUR MODEL

In this section, we provide a detailed description of a generalized version of our model,

which one can apply to an arbitrary number of diffusing molecules that cells secrete

and sense. Our aim here is to concisely summarize the model. For motivations behind

the assumptions of our model, please see the main text and our earlier studies [Maire &
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Figure 5.7: Self-organized dynamic-pattern-forming systems with poorly understood interactions that our
theoretical framework may help in elucidating. (A–D) Biological systems with two or more interacting
pathways that generate spatiotemporal patterns but whose exact mechanisms and cellular dialogues remain
poorly understood. (A) During somitogenesis, a wave of gene-expression states propagates along the anterior-
posterior axis of an elongating, pre-somite mesoderm. The conventional view is that this wave is mediated by
a coupling between individual oscillators — oscillations in expression levels of Wnt, Notch, and Fgf — and/or
by large-scale gradients in the gene-expression levels for those molecules. But how Notch regulates Wnt and
vice versa remain questionable while Hes7 is known to mediate the Fgf-Notch interaction (Sonnen et al., 2017).
Figure partially adapted from (Oates et al., 2012). (Caption continued on next page.)
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Figure 5.7 (previous page): (B) Waves of β-catenin (green ring) and Smad2 (red ring) expression-levels propa-
gate in a field of stem cells. Although we know that these waves form due to BMP inducing β-catenin (part of
the Wnt pathway) and SMAD2 (part of the NODAL pathway), how exactly these two inductions occur remains
poorly understood (Chhabra et al., 2019). (C) The circadian clocks of each cell within the leaf of Arabidoposis
Thaliana are thought to be coupled to each other through an as-yet-unknown mechanism, which is suspected
to involve a variety of hormones, sugars, mRNAs and other molecules (Greenwood et al., 2019). (D) Planaria
regenerate themselves after being cut into two or more pieces. This is thought to rely on mutual antagonism
between gradients of Wnt expression (purple) and of an as-yet-unidentified molecule (yellow) (Stückemann et
al., 2017). Figure partially adapted from (Stückemann et al., 2017).

Youk, 2015a; Olimpio et al., 2018].

We consider N cells that communicate through l distinct, diffusing signaling-molecules

that the cells secrete and sense. We first consider cells that are placed on a triangular lat-

tice such that each cell has six nearest neighbors, each at a distance of a0. We specify the

state of the system — a “system state” — by X (t ) = {
Xk(t )

}N
k=1 , where Xk = (X (i )

k , . . . , X (l )
k )

is the state of cell k, which we call a “cell state” for cell k. In our description below, we will

distinguish between the system state X and the cell state of cell k, Xk . Suppose that cell

k secretes a signaling molecule i (1 ≤ i ≤ l ) at a rate C (i )
k , which is bounded below and

above as: C (i )
OF F ≤ C (i )

k ≤ C (i )
ON . Note that we allow for the possibility that the lower and

upper bounds on the secretion rate can be different for each signaling molecule. The

secretion rate is related to the cell state through the relation

C (i )(X (i )
k ) ≡ (C (i )

ON −C (i )
OF F )X (i )

k +C (i )
OF F . (S5.1)

In the simplest scenario, the cells secrete signaling molecules at a rate which is either

low or high. In this case, each of the X (i )
k takes binary values — 0 or 1 — such that

C (i )(X (i )
k = 1) = C (i )

ON and C (i )(X (i )
k = 0) = C (i )

OF F . Alternatively, the secretion rate could

take continuous values within the closed interval [C (i )
OF F ,C (i )

ON ]. If so, then the cell states

are continuous variables (i.e., X (i )
k can take any value between 0 and 1. For convenience,

we set C (i )
OF F = 1 for all i and measure all concentrations in units of this OFF-secretion

rate (which we take to be equal for all molecules, unless we state otherwise).

The concentration of a signaling molecule, once it reaches a steady state, decays with

distance from the cell that is secreting it as follows [Olimpio et al., 2018]:

c(i )(r ) =C (i )
k f (i )(r ),

f (i )(r ) = λ(i )

r
exp

(
Rcell − r

λ(i )

)
sinh

(
Rcell

λ(i )

)
. (S5.2)

Here we assumed that the cells are spherical with radius Rcel l ≡ rcel l a0 and λ(i ) is the
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Figure S5.1: Statistics of trajectories from each of the three classes of cellular dialogues. (Related to Figure
5.3) All results are based on the same simulation data set also used to generate Figure 5.3E, obtained from Latin
hypercube sampling over various system parameters (see Section S5.4.2). (A) Mean simulation time across all
simulations of a given network. The simulation time is the time it takes for the system to reach equilibrium
or the maximum simulation time if a trajectory never reaches equilibrium. Same graphical representation as
in Figure 5.3E. (B) Fraction of trajectories with a periodic final state, i.e. a steady state where the final pattern
repeats itself after a fixed number of time steps greater than one. Same graphical representation as in Figure
5.3E. (Caption continued on next page.)
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Figure S5.1 (previous page): (C) Distribution of the periods of the periodic final states among networks that
generate dynamic temporal patterns (Figure 5.3C) and networks that also generate dynamic spatial patterns
(Figure 5.3D). (D) Trajectory periods found in simulations of the networks generating dynamic spatial patterns
(Figure 5.3D). Each diamond represents a period that was observed in at least one simulation. (E) Average final
spatial index for each of the two genes, sorted by cellular dialogue. The trajectories are divided into different
classes depending on the final period of the trajectory (represented by differently colored lines). The average
is taken over all trajectories within each class. For example, the purple data points show the average values for
the subset of trajectories that have a period which is a multiple of the grid size. Error bars represent s.e.m.

diffusion length of signaling molecule i . The diffusion length measures how far the

molecule can typically travel before degrading and is set by the molecule’s diffusion con-

stant and degradation rate [Olimpio et al., 2018]. Here, we also introduced an “interac-

tion function” function f (i )(r ) to capture the distance-dependent decay. Note that C (i )
ON

C (i )
OF F are effective secretion rates for ON- and OFF-cells respectively that lump together

several terms which appear in the reaction-diffusion equation for molecule i . They can

depend on the diffusion lengths λ(i ). But we will consider them to be independent of

the diffusion lengths by assuming that C (i )
ON and C (i )

OF F remain constant as we change λ(i )

by tuning other parameters which we do not specify here for brevity. We can reduce the

number of parameters by expressing all lengths in units of lattice spacing, a0. We define

l (i ) ≡ λ(i )

a0
and rewrite the interaction function as

f (i )(ρ) = 1

ρ
exp

(
rcell −ρ

l (i )

)
sinh

(
rcell

l (i )

)
, (S5.3)

where we introduced ρ ≡ r
a0

. Here, rcel l ≡ Rcel l /a0 is the radius of a cell expressed in

units of the lattice spacing a0.

At any given time, the concentration that a cell senses is the sum of the concentrations

due to each of the cells in the system. We express the concentration of molecule i that a

cell k senses as

Y (i )
k =

N∑
m=1

f (i )
kmC (i )

m , (S5.4)

where f (i )
km is a distance-dependent interaction strength between cells k and m. Explic-

itly, we have

f (i )
km ≡

 f (i )(rkm) (k 6= m)

1 (k = m)
, (S5.5)

with rkm being the distance between cells k and m and f (i ) (r ) as defined in S5.2.

For later reference, we introduce an “interaction strength” f (i )
N for each signaling molecule
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Figure S5.2: Self-organization of static and dynamic patterns for cellular dialogues with OR-logic signal
integration, instead of AND-logic. (Related to Figure 5.6) Results here can be compared with Figures 5.3B-E.
Parameter sets are independently generated from Latin hypercube sampling, with 104 different parameter sets
per cellular dialogue (see Section S5.4.2). (A) By measuring the “equilibration time” - time taken for a simula-
tion to terminate due to either forming a static configuration or a dynamic pattern - for many simulations that
all used the same cellular dialogue, we obtained the largest possible (maximum) equilibration time. To ensure
that we do not let a simulation run forever, we arbitrarily forced simulations to terminate after tmax = 104

timesteps if it has not already terminated by itself. (B) Fraction of simulations that exhibit a periodic pattern
(i.e., a dynamic pattern that repeats itself after a fixed number of timesteps which is larger than one). (C) Av-
eraging the equilibration times of all simulations for each cellular dialogue. (D) Distribution of periods for
periodic patterns. Results shown for cellular dialogues that generate dynamic temporal patterns (Figure 5.3C)
and cellular dialogues that also generate dynamic spatial patterns (Figure 5.3D). (Caption continued on next
page.)
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Figure S5.2 (previous page): (E) Distribution of periods for periodic patterns for cellular dialogues that gener-
ate dynamic spatial patterns (Figure 5.3D). Each diamond represents a period that we observed in at least one
simulation. (F) Wave configurations observed with the OR-logic (compare with the AND-logic shown in Figure
5.4D). (G) Robustness of wave propagation for all six instances of waves shown in (F), defined as the Q-value
obtained from simulations (see Figure S5.10 for comparison with the AND-logic).

i :

f (i )
N = ∑

m 6=k
f (i )

km . (S5.6)

Note that if all cells secrete at the same rate C (i ), then they would all sense the following

concentration

Y (i ) = (1+ f (i )
N )C (i ). (S5.7)

REGULATORY INTERACTIONS

We now consider how the sensing of one signaling molecule affects the secretion of itself

and other molecules by a cell. Molecule j can affect the secretion of signaling molecule

i in three distinct ways (note that i can be equal to j ). First, molecule j may activate

secretion of molecule i , meaning that a higher concentration of j leads to a higher se-

cretion rate of i . Secondly, molecule j may repress secretion of molecule i , meaning

that a higher concentration of j leads to a lower secretion rate of i . Finally, molecule

j may not influence the secretion rate of molecule i at all. We can capture these three

possibilities by an “interaction matrix” Mint, defined as

M (i j )
int =


1 j activates i

−1 j represses i

0 no interaction between j and i

(S5.8)

The interaction matrix allows us to define a “cellular dialogue” as a directed (multi)graph

in which each node represents one of the l signaling molecules and each directed edge

represents one molecule (node) controlling the secretion rate of either itself (self-loop)

or another molecule (directed edge from one node to another) as dictated by the inter-

action matrix.

A cell may respond in one of multiple possible ways to the sensed concentrations of all

the signaling molecules. Its biochemical circuitry sets its response. Here we consider a

relatively simple case in which the cell senses the extracellular signaling molecules and

then uses one of two standard logic gates — AND and OR gates — to integrate the signals

triggered by the sensed molecules to regulate the genes that encode each of the signal-

ing molecules. These gates apply to cells with infinite and finite Hill coefficients (i.e.,
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cell’s response is not necessarily binary for either logic gates). First, let us consider a

cell that uses an AND-gate to integrate the intracellular signals triggered by the sensing

of two signaling molecules. For two signaling molecules that activate the secretion of

each other, one way to achieve an AND-gate is having two transcription factors — one

for each signaling molecule — both needing to bind to the promoter of the gene that

encodes the signaling molecules. One of the two transcription factors alone binding to

the promoter would be insufficient for activating expression of — and thus secretion

of — any of the signaling molecules. Only when both transcription factors are bound

to the same promoter, their cooperative interactions would induce the expression and

secretion of the signaling molecule that the gene encodes [Buchler et al., 2003]. This

scenario leads to a multiplicative update rule for our model. Namely, we determine the

cell’s secretion rate at the next time step in the cellular automaton by multiplying several

mathematical functions — one for each transcription factor — with each function de-

scribing the bound fraction of a given transcription factor. Alternatively, a cell may use

an OR-gate to regulate genes that encode the two signaling molecules. Here, either of

two transcription factors can induce transcription, without the need for both transcrip-

tion factors to be present. In practice, this can be realized by placing strong binding sites

for both molecules at a considerable distance apart, so that the two transcription fac-

tors can individually bind to the promoter and recruit RNA polymerases [Buchler et al.,

2003].

Mathematically, let g (i j )(X) be the result of the regulation of the gene that encodes molecule

i by molecule j , given a system state X. If g (i j) (X) = 1, then the gene is activated or un-

repressed, whereas g (i j) (X) = 0 means that the gene is either un-activated or repressed.

The specific mathematical form of g (i j )(X) depends on the regulatory interaction. As a

general form, we can write it as

g (i j )
k (X(t )) = θ

((
Y ( j )

k −K (i j )
)

M (i j )
int

)
, (S5.9)

where θ(x) =
1 x > 0

0 x < 0
is the step function. The value of θ(0) is unspecified, but to be

consistent with the case of not having a regulatory interaction (M (i j )
int = 0), we set θ (0) = 1

for the AND-logic and θ (0) = 0 for the OR-logic. Using the standard syntax of Boolean

algebra, we can denote the AND-operation as ∧ and the OR-operation as ∨. Then, using

arithmetic representation of logic gates, we have x∧y = x y and x∨y = x+y−x y . Hence,

a cell’s response with an AND-gate takes the form

X (i )
k (t +1) = g (i 1)

k (X(t ))∧ g (i 2)
k (X(t )) = g (i 1)

k (X(t ))g (i 2)
k (X(t )), (S5.10)
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and a cell’s response with an OR-gate takes the form

X (i )
k (t +1) = g (i 1)

k (X(t ))∨ g (i 2)
k (X(t )) = g (i 1)

k (X(t ))+ g (i 2)
k (X(t ))− g (i 1)

k (X(t ))g (i 2)
k (X(t )),

(S5.11)

We can readily generalize these expressions to cells with more than two signaling molecules

by using the standard rules of Boolean algebra.

STEADY STATES OF THE SYSTEM

For regulatory interactions with infinite Hill coefficients, each cell has one of two states

for each signaling molecule — OFF (i.e., basally secreting the molecule) and ON (i.e.,

maximally secreting the molecule). Hence, if the system has a total of N cells, the to-

tal number of possible gene-expression states for the population is finite (2N ), meaning

that the system (i.e., population) is bound to eventually reach one of two types of steady

states in terms of the population-level gene-expression:

1. Stationary steady-state: There is a time t∗ such that for all t ≥ t∗, the system

does not change any more (i.e., X(t + 1) = X(t )). Simply put, this means that the

population-level gene-expression state remains constant starting at time t∗.

2. Periodic steady-state: There exists a time t∗ after which we have X(t +τ) = X(t ) for

all t ≥ t∗. Then τ is the period of the periodic steady-state. Simply put, this means

that the population-level gene-expression state undergoes a periodic oscillation

with a period τ.

The t∗ — which we will call equilibration time — is the time that the system takes to

reach either one of the two types of steady states. For stationary steady-states, this is

simply the first time when the system reaches a state that does not change over time any

more. For periodic steady-states, we define the equilibration time when the onset of the

periodicity occurs.

ENUMERATING CELLULAR DIALOGUES

If we have two signaling molecules, there are four possible interactions between those

two molecules. Each interaction can be either activating, repressing or absent. Hence

two molecules can form a total of 34 = 81 possible cellular dialogues. However, many of

these cellular dialogues are equivalent to one another because swapping the labels “1”

and “2” on the two molecules (Figure 5.1C) conserves the topology of the graphs that

represent the cellular dialogues (i.e., which molecule is labeled “1” or “2” is arbitrary).

Under this label-swapping operation, the interaction matrix becomes(
M (11)

int M (12)
int

M (21)
int M (22)

int

)
7→

(
M (22)

int M (21)
int

M (12)
int M (11)

int

)
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Hence, for cellular dialogues that are invariant under the label-swapping operation, we

must have M (11)
int = M (22)

int and M (12)
int = M (21)

int , leaving us with two independent elements

in the interaction matrix. Each of these two elements can have one of three possible val-

ues. Thus, the cellular dialogues that are invariant under the label-swapping operation

reduce down to a set of 9 distinct cellular dialogues. We can reduce the remaining 72 cel-

lular dialogues to a set of 36 unique cellular dialogues. Hence, we have total of 45 distinct

cellular dialogues. After neglecting the trivial cellular dialogues — those in which neither

of the two molecules regulates the other — we obtain the set of 44 cellular dialogues that

are shown in Figure 5.3. Note that we also enumerate all cellular dialogues in which a

molecule regulates itself but does not regulate the other molecule.

POPULATION-LEVEL DESCRIPTION

To characterize the population-level behavior without focusing on the state of every sin-

gle cell, we introduce “macroscopic variables”. Specifically, we define two macroscopic

variables for each molecule, leading to a total of four macroscopic variables for a pop-

ulation. One of them is the average expression level of the gene that encodes molecule

i which, in the case of the digital cells, is equal to the fraction of cells that have gene i

turned on:

p(i ) = 1

N

N∑
k=1

X (i )
k . (S5.12)

The other macroscopic variable is the “spatial index” for gene i , which characterizes how

spatially correlated the expression levels for gene i is among the cells. We first introduced

this in earlier studies [Maire & Youk, 2015a; Olimpio et al., 2018] and we now define it for

a population with multiple signaling molecules as follows:

I (i ) = 1∑
n 6=m

f (i )
mn

∑
m

∑
n 6=m f (i )

mn(X (i )
m −〈X (i )〉)(X (i )

n −〈X (i )〉)
1
N

N∑
m=1

(X (i )
m −〈X (i )〉)2

(S5.13)

The spatial index for gene i , I (i ), quantifies how spatially ordered the cells are in terms of

their expression level for gene i . It can have a value between -1 and 1, with negative val-

ues indicating that neighboring cells tend to have different gene-expression levels (such

as in checkerboard patterns or anti-ferromagnetism in spin models) and positive val-

ues indicating that neighboring cells that tend to have similar gene-expression levels

(forming islands with the same gene expression level, similar to ferromagnetism). When

I (i ) = 0, the cells’ expression levels of gene i are, on average, uncorrelated. In the case of

spatially ordered patterns such as traveling waves, the values of I (i ) are positive and rela-

tively high, with exact values depending on the parameters of the system and the wave’s

shape.
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Together, the set of macroscopic variables
{

p(i ), I (i )
}l

i=1 — for l signaling molecules (we

considered l = 2 here) — convey population-level information. However, this descrip-

tion does not contain information about correlations between different genes. For ex-

ample, we may specify, for two-molecule cellular dialogues, that p(1) = p(2) = 0.5 and

I (1) = I (2) = 0.5. This tells us that half of the genes of each type are turned on and that

the cells which have a certain gene on will tend to cluster with other cells that have the

same gene turned on. However, we cannot infer whether a cell that has gene 1 turned

on is likely to have gene 2 turned on as well or whether its neighbors tend to have gene

2 turned on. There are different ways to consider metrics that also consider such cross-

correlations. For example, we can group together cells with each of the four cell states

(i.e., (gene 1=ON, gene 2=ON), (ON, OFF), (OFF, ON), (OFF, OFF)) and study the evolu-

tion of these populations. However, the disadvantage of this approach is that it does not

easily generalize to continuous gene-expression states that we also consider in our work

(i.e., for gene regulations with finite Hill coefficients). Alternatively, we can use estab-

lished statistical metrics for correlations between two sets of values (i.e., gene-expression

levels for the two different genes) such as the Hamming distance, the Jaccard index (JI)

and the Sørensen-Dice coefficient. As we are mainly interested in knowing whether a spa-

tial configuration is ordered or disordered (i.e., whether the cells have an “interesting”

pattern or not), we have not studied such cross-correlations. Nevertheless, our open-

source software, MultiCellSim, computes the cross-correlation along with p(i ) and I (i ).

MOVING AVERAGES

We calculated the Fano factor — variance divided by the mean — for each macroscopic

variable in Figures 5.5C and S5.3 by using a sliding time-window of 10 timesteps (i.e., for

a macroscopic variable y(t ), we compute its mean and variance for values of t within

the interval (t , t +10). Specifically, we calculated a moving variance using the MATLAB

function ttmovvar and the moving mean using ttmovmean. The Fano factor represents

a signal-to-noise ratio within a given time-window frame.

S5.4.2. SIMULATION AND ANALYSIS OF THE MODEL

In this section, we provide a concise overview of our simulations and analyses.

FIXING INITIAL CONDITIONS

We started simulations by generating a randomly chosen, initial spatial-configuration

that is subject to certain constraints. Unless we chose p(i ) and I (i ) to each have a specific

value at the beginning of a simulation, we let each cell to have a 50% chance of having

gene i be ON. This tends to generate spatial configurations in which half of the cells have

gene i turned on. In some cases, we chose p(i ) and I (i ) to each have a specific value at
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Figure S5.3: Additional examples showing how the two macroscopic variables — spatial index and fraction
of cells that are ON for each of the two genes — vary over time during self-organization of dynamic spatial
patterns. (Related to Figure 5.5) (A-F) Plots show how the fraction of cells that have a certain gene ON and
the “spatial index” for that gene changes over time (see Section S5.4.1). Each panel here corresponds to one of
the filmstrips shown in Figure 5.2, as indicated by the panel titles. Time is in units of discrete time steps. Blue
curves correspond to gene 1 and red curves correspond to gene 2. For each pattern-forming dynamics, we
show two graphs corresponding to the graphs of the macroscopic dynamic, such as shown in Figure 5.5B. Left:
mean fraction of cells p(t ) that have the indicated gene ON. Right: Spatial index I (t ) for the indicated gene.

the beginning of a simulation (Figure S5.10). Here, we fixed the value of p(i ) by randomly

selecting this fraction of cells, for which we turn on gene i . To fix the value of I (i ), we

used a Monte Carlo algorithm outlined below.

ALGORITHM FOR GENERATING SPATIAL CONFIGURATIONS WITH A GIVEN SPATIAL INDEX

We devised an algorithm that generated spatial configurations, for initializing our simu-

lations, with specified values for the spatial index I (i ) and p(i ). Our algorithm was moti-

vated by a similar problem in physics — a problem on Ising spin systems — in which one

needs to fix the total energy of the spins (analogous to I (i )) without changing the average

magnetization (analogous to p(i )). Our algorithm is illustrated in Figure S5.4 and is as

follows:
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1. Given a spatial configuration with a given value of p, start by computing the value

of the I for this configuration.

2. Check whether we should increase or decrease I by comparing it to the target value

Itarget.

3. If I < Itarget

(a) Select the ON-cell with the minimum number of neighbors which are also

ON. Turn this cell OFF.

(b) Select the OFF-cell with the maximum number of neighbors which are also

OFF. Turn this cell ON.

4. Else if I > Itarget

(a) Select the ON-cell with the maximum number of neighbors which are also

ON. Turn this cell OFF.

(b) Select the OFF-cell with the minimum number of neighbors which are also

OFF. Turn this cell ON.

5. Compute the spatial index of the new configuration, Inew. Check whether it has

increased or decreased as required.

6. If it has changed as required, accept the change. Go to step 8.

7. Else, reject the new configuration. Go to step 1.

8. If Inew ∈ [Itarget −ε, Itarget +ε], terminate the simulation.

9. Else, go to step 1 with the new configuration with I = Inew.

Because we switch the state of both an ON-cell and an OFF-cell, the average number of

ON-cells remains constant. To increase I , we choose cells that tend to have a different

state from most of their neighbors and change their state. To decrease I , we change

cells whose state are similar to that of their neighbors. Note that this algorithm is not

guaranteed to converge to Itarget because at each iteration of the loop outlined above, we

are not guaranteed to increase or decrease I as required. In particular, if the specified

value of is outside the range of possible values for I [Olimpio et al., 2018], the algorithm

cannot reach the specified value of I . Therefore, we typically set a limit on the maximum

number of iterations before we terminate the algorithm. Finally, we typically set ε= 0.01,

which allowed for convergence at reasonable speeds while limiting deviations from the

target value.
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Figure S5.4: Algorithm used to generate spatial configurations with a desired value of spatial index I (i ) and
a fraction of cells which are ON for gene-i (denoted p(i )). (Related to Figure 5.1) Section S5.4.1 defines the two
“macrostate” variables, I (i ) (spatial index for gene-i) and p(i )(fraction of cells that express gene-i (i.e., ON for
gene-i). Since each cell has two genes — one for each secreted molecule — there are two spatial indices and
two p’s. Atypical simulation, unless stated otherwise, started with a maximally disordered field of cells (i.e.,
cells’ gene-expression levels were spatially uncorrelated, for both genes). This means that, at the beginning of
a simulation, the spatial index I (i ) was zero for both genes. While keeping the spatial indices to be zero, we
could set p(1) and p(2) to be virtually any value that we desired, by using the algorithm shown here. In short,
the algorithm starts with a spatial configuration described by some pair of macroscopic variables (p(i ), I (i )),
which may not have the values that we want. The algorithm then iteratively updates the value of I (i ) while
keeping p(i ) constant. It does so by randomly selecting cells and changing their states until we obtain the
(p(i ), I (i )) that we want to begin our simulation with. As (p(i ), I (i )) is specific for a single gene (i.e., gene-i), we
can vary (p(1), I (1)) independently of (p(2), I (2)).
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TERMINATING SIMULATIONS

As noted earlier, we terminate a simulation either when the population reaches a steady

state or the simulation reaches the maximum number of time steps tmax, which we ar-

bitrarily set to be a sufficiently large number. As an example, we chose tmax = 105 for

populations with N = 225 cells. At each time step, we checked for stationary steady-

states by comparing the current system state with the previous timestep’s system state.

To check for periodic steady-states, one might resort to manually checking the system

state at every timestep to see whether the current state has been visited earlier. This be-

comes computationally infeasible for running many simulations. So, we devised a more

efficient scheme for detecting whether the simulation has entered a periodic steady-

state. Instead of checking at every timestep, at every tcheck timesteps we manually check

whether the previous system state has been visited earlier (we chose tcheck = 103). If we

find periodicity in the system states, we ran a second algorithm to find the earliest time at

which any state has repeated itself, which told us when the periodic steady-state began.

BATCH SIMULATIONS

Many of the results presented here are from batch simulations, which means that we per-

formed a large set of simulations and obtained statistics on various measures. In many

cases, we fixed all parameter values and only varied the initial spatial configuration. By

performing a large set of such simulations, we could distinguish whether an observed

feature was a general feature for a particular set of parameters or was merely an artifact

of a specific initial spatial-configuration. We also ran many simulations, each time vary-

ing the parameter values, to find features that were general for a large range of parameter

values. Since the parameter values form a continuum, we could not simulate all possible

parameter values and thus had to find a way to sample over the space of all parame-

ter values. Specifically, we employed Latin hypercube sampling [McKay et al., 1979], in

which we efficiently sampled over a multi-dimensional parameter space by taking pa-

rameter sets that were non-overlapping in any of the dimensions. We used this method

to generate a large set of conditions for each of the 44 distinct cellular dialogues that we

computationally screened. The results in Figures 5.3, S5.1 and S5.2 used this approach.

Specifically, to obtain these results, we defined a region in the parameter space in which

we varied the parameters K (i j ) and C ( j )
ON over a range of values — ranging from 1 to 103

— while keeping all other parameters held fixed. We sampled parameter values within

this region by using the MATLAB function lhsdesign to generate a Latin hypercube sam-

ple with 10,000 points. We used this approach for each of the 44 cellular dialogues, with

both the AND-logic (Figures 5.3 & S5.1) and the OR-logic gate (Figure S5.2).
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IDENTIFYING TRAVELING WAVES

We devised an algorithm for automatically identifying traveling waves in large sets of

simulations. Since traveling waves retain their shape while propagating through space,

the values of p(i ) and I (i ) would remain constant over time. Due to the periodic bound-

ary conditions that we used, having a traveling wave would mean that the system state

returns to itself after n time steps, where n = p
N and N is the total number of cells.

Hence, we first screened through the simulations to find the ones that had a periodic

steady-state with a period that was a multiple of n — we looked for integer multiples

of n since there may be more complicated waves whose shapes slightly morph as they

enter the edges of the field. We next checked whether p(i ) and I (i ) were (sufficiently)

constant over the course of one period. Using these two features, we could identify trav-

eling waves in batch simulations without, by eye, examining the simulations explicitly

one by one. We then extended the algorithm such that it also gave the orientation of the

wave if the cells indeed formed a traveling wave (see Figure S5.5C). We did so through a

two-step procedure. First, we distinguished cells that formed the “background” (exterior

cells — Figure 5.4A) from the cells that formed the wave band (assuming that there were

three states that made up a wave — see Figure 5.4A). Then, we traced the cells from an

arbitrarily chosen layer of the wave band to see whether they percolate the system from

one horizontal (vertical) edge to the other. If so, then we assigned a horizontal (vertical)

orientation to the wave. Else, we assigned a diagonal orientation to the wave.
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S5.4.3. EXTENDING THE MODEL BY ADDING COMPLEX ELEMENTS

In this section, we discuss how we extended our model by adding more complex ele-

ments (Figure 5.6A). In the main text and Figures 5.6 and S5.5-S5.13, we describe in de-

tail how adding the four complex elements shown in Figure 5.6A affect the formation

and propagation of dynamic spatial-patterns. Below, we dedicate one section for each

of these four complex elements as well as for another complex element that is not shown

in Figure 5.6 (i.e., spatial gradient of parameter values).

STOCHASTIC SENSING AND RESPONSE

There are various sources of stochasticity that can affect pattern formations. These in-

clude stochastic expression of the genes that encode the signaling molecules and the fact

that a cell cannot determine the concentration of the signaling molecules to an arbitrary

level of accuracy (i.e., the Berg-Purcell limit). We did not try to specify the exact source

of noise. Instead, we modeled the cells’ noisy responses to the signaling molecules by

taking a phenomenological approach in which we lumped together various possible

sources of stochasticity into a single mathematical term. Specifically, based on our pre-

vious work [Olimpio et al., 2018], we let the threshold concentration for how gene i is

regulated by molecule j — denoted K (i j ) — to fluctuate from cell to cell and from time

to time (Figure 5.5A – top left). Mathematically, we can represent this fluctuation as

K (i j ) = K (i j )
0 +δK (i j ). (S5.14)

Here K (i j)
0 is the threshold concentration for gene i being regulated by molecule j in

the absence of any noise and δK (i j ) ∼ N (0,α(i j )) is a normally distributed random vari-

able. At each time step, we used above equation to update the threshold concentration

K (i j ),independently for each cell. In order to define a global noise-strength without in-

troducing many variables, we have let α(i j ) = αK (i j)
0 . In other words, α = α(i j )/K (i j)

0

was fixed for all interactions (i.e., for all pairs (i , j )), meaning that the variation in the

threshold concentration was proportional to the threshold concentration, with the same

proportionality factor α used for every pair (i , j ).

CONTINUOUS CELL-RESPONSE FUNCTION

In our model, we so far assumed that cells are binary and secrete signaling molecule i at

either a low, basal rate C (i )
OF F or at a high, maximal rate C (i )

ON . This is a valid assumption

whenever the response function is sufficiently ultrasensitive, as discussed in the main

text. However, to treat more gradual response functions, we replaced the step-response

function (i.e., infinite Hill coefficient) by a continuous, Hill function with a finite Hill co-

efficient. The Hill coefficient quantifies the steepness of the Hill function. For simplicity,

we assumed that all molecules have the same Hill coefficient n. The update rule for the
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cells’ states is still the same as previous, but now with

g (i j )
k (X(t )) =



(
Y

( j )
k

)n

(K (i j ))n+
(
Y

( j )
k

)n activation(
K (i j ))n

(K (i j ))n+
(
Y

( j )
k

)n repression

1 no interaction

(S5.15)

Note that the Hill coefficient in our model does not have a direct physical interpretation.

Instead, it is a phenomenological parameter that describes the steepness of the response

function. This is because, in real cells, a ligand-bound receptor typically induces gene

expression through a complex signal-transduction cascade rather than through a single

molecular process such as a binding of a transcription factor at a promoter. As such,

the Hill coefficient does not model any one specific biomolecular process. Therefore,

whereas in cooperative binding models, Hill coefficients less than one and larger than

two are rare, our model allows for the Hill coefficient to be arbitrarily high or low.

DISORDERED CELL POSITIONS

In the previous sections, we considered cells to be on a triangular lattice. This is a fair

representation of certain multicellular systems (see Table S1 in Olimpio et al., 2018 for

a list of examples). But in general, communicating cells do not need to be on a regular

lattice. To extend our model to account for alternative spatial arrangements of cells, we

adapted our model to allow for randomization of the cell positions through an algorithm

adapted from Markov Chain Monte Carlo (MCMC) simulations of hard spheres [Krauth,

2006]. The algorithm allowed us to tune the degree of randomness of the cell positions,

Figure S5.5 (preceding page): Formation and propagation of traveling waves under the influence of noisy
gene-expression, finite Hill coefficient, and spatially changing parameter values. (Related to Figure 5.6).
(A-B) Detailed breakdown of simulations with two of the complex elements — stochastic response and con-
tinuous response — into four classes of patterns. Dynamic spatial pattern here refers to traveling waves specif-
ically, dynamic temporal patterns to all other simulations that yielded periodic steady states, static patterns
to simulations where the final state was non-periodic and max. simulation time reached to simulations that
never settled down to a steady state within the total simulation time (10,000 timesteps). (A) Effect of complex
elements on the formation of dynamic patterns, corresponding to the data also used in Figure 5.6E (upper
panels). We performed 200 simulations for each value of the noise and 150 simulations for each value of Hill
coefficient. (B) Effect of complex elements on traveling wave propagation, corresponding to the data also used
in Figure 5.6D (upper panels). We performed 1,000 simulations for each value of the noise and 2,534 simula-
tions for each value of Hill coefficient. Each simulation corresponds to a different parameter set for which in
the absence of noise and with infinite Hill coefficient a straight traveling wave, such as depicted in the lower
panel of Figure 5.6B, can propagate. (C) Effect of a parameter gradient on the orientation of formed traveling
waves. Specifically, we considered a step-function gradient for the threshold parameter K (21) oriented along
either the vertical direction (upper panels) or horizontal direction (lower panels). We classified the orientation
of the formed traveling waves as the relative gradient strength (see Section S5.4.3) is increased. The unclassi-
fied simulations in the bar graphs did not form traveling waves. We performed 200 simulations for each value
of the gradient strength.
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varying from a perfect lattice to a fully disordered arrangement of cells. However, we still

assumed that the cells are immobile or move at a much slower time scale than the time

scale involved in molecular/gene-expression changes.

We modeled the cells as 2D hard spheres with a radius of Rcell (identical for all cells). The

cells were placed in such a way that no two cells overlaped. Initially, the cells were placed

on a regular hexagonal lattice, with distance a0 between the cells. We selected a random

cell j with position x j = (x(1)
j , x(2)

j ). We then performed a Monte Carlo step, where we at-

tempted to move the cell by a displacement, x j → x j+δx j . Hereδx j = (δx(1)
j ,δx(2)) j , with

δx(1)
j ,δx(2)

j being two random variables that are independent of each other and drawn

from a uniform distribution on [−ε,ε]. If the cell did not overlap with any other cell at the

new position, we accepted the move. Otherwise, we rejected the move and a new move

was proposed. To avoid repeated rejections, the cell radius and εwere chosen to be suffi-

ciently small. In all our simulations, we took Rcell = 0.2a0 and ε= (a0−2Rcell)/4 = 0.15a0.

The number of Monte Carlo steps we performed using this algorithm is a measure for

the degree of randomness in our cells’ positions. As a rough indication, for a system

of N = 144 cells, after 100 Monte Carlo steps, the arrangement still appears to be very

similar to a minutely perturbed lattice. After 104 Monte Carlo steps, we observed that

the cells were clearly not on a lattice anymore and that distinct rows and columns of cells

were still recognizable. After 105 Monte Carlo steps, we found that the arrangement of

cells looked similar to what one would obtain by randomly “dropping” cells onto a plane.

We can make these statements more precise by looking at the spatial distribution of cells

surrounding each cell. Quantitatively, we now have a different interaction strength f (i )
N

for each cell in the system. As the cells become more randomly arranged, the distribution

of the interaction strengths becomes broader and the mean also increases. From these

calculations, one can show for example, that after ∼ 105 Monte Carlo steps, a field of

N = 144 cells obtains spatial configuration that is indistinguishable from that of a field

of randomly placed cells.

CELL MOTILITY

We also extended our model to account for undirected, diffusive movements of the cells.

Researchers have considered diffusive cell motility as a stochastic process and mod-

eled it with the Langevin equation. They have applied this approach to treat fibroblasts

[Dunn & Brown, 1987], endothelial cells [Stokes et al., 1991] and granulocytes [Schien-

bein & Gruler, 1993]. More precisely, these earlier studies have proposed that the un-

derlying process is that of an Ornstein-Uhlenbeck process, in which cells randomly drift

while experiencing a restorative force — this force represents friction in a Brownian mo-

tion — which tends to bring the cells back to their original positions. A previous work
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showed that one can represent the discrete time process that corresponds to this pro-

cess with the following equation [Dunn & Brown, 1987]:

d x(t ) =φd x(t −1)+η(t )+θη(t −1), (S5.16)

where d x(t ) = x(t ) − x(t − 1) is the displacement of a cell at time t , η(t ) is a discrete

random noise term with mean zero, and φ and θ are real numbers that depend on the

restorative force’s strength.

For our system, we took a simpler approach to model cell motility by neglecting the tem-

poral correlations which arise in the frictional term. Hence, we assumed that the cells

drift around without one cell’s motion being correlated with another cell’s motion, as in a

classic random-walk and Wiener process. To model cell motility then, we used the same

Monte Carlo algorithm that we used for randomizing the cell positions but now move

all cells at each time step instead of perturbing the initial positions for a fixed number

of cells. We defined the cell motility σD to be the width of the Gaussian term, in units of

a0, describing the Brownian motion process through which we update the cell positions.

Explicitly, at each time step, we updated each of the N cells one by one through

x j (t ) → x j (t )+δx, δx ∼N (0,σD a0). (S5.17)

Here σD is a parameter that quantifies the extent of a cell’s motion in units of the lattice

constant a0 (i.e., the distance between two neighboring cells when placed on a regular

lattice).

SPATIAL GRADIENT OF PARAMETER VALUES

Studies of the Turing-patterning mechanism have revealed that a spatial gradient of

production rates and other parameters as well as more complex, spatially anisotropic

parameter values can affect in which direction stripes become aligned after forming

through Turing instability [Hiscock & Megason, 2015]. Motivated by this observation,

we wondered whether spatial gradients of parameter values can influence the direction

in which waves would travel after forming in our system. To this end, we experimented

with applying spatial gradient of parameter values in various directions and for various

parameters. As an example, cells at the top edge may have a higher maximal secretion

rate for molecule i than the cells at the bottom edge, with the maximal secretion rate

continuously changing as we traverse the field of cells row by row. Starting from a pa-

rameter set which is able to generate waves, we modified one of the parameters P of a

cell k to be position dependent,

P (xk ) = (1+ f (xk ))P0, (S5.18)
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position of cell k, f (xk ) is a modulation term that adjusts the parameter PP , and P0 is

a constant. The simplest type of a spatial gradient that we could consider was a step

function defined in either a horizontal or vertical direction (Figure S5.5C). For exam-

ple, we could take a vertical gradient by defining f (x j ) = Ayθ
(
x(2)

j

)
, with a step function

θ(x) =
1 if x ≥ 0

−1 if x < 0
(this assumes that half of the cells are at x(2) > 0). We then quan-

tified the sharpness of the gradient by a gradient-strength parameter Ay , which repre-

sents the fractional change in the value of P on either side of the step. Note that with this

gradient, the average value of the parameter remains unchanged from cell to cell (i.e.,∑
j f (x j ) = 0).
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S5.5. SUPPLEMENTARY INFORMATION

S5.5.1. OVERVIEW OF SELF-ORGANIZED PATTERNS

In this subsection, we provide a detailed but mostly qualitative overview of the different

types of self-organized patterns we observed in simulations of our model. The aim is give

a general overview of the different possible morphologies and dynamic features of these

patterns, and to understand basic features of these patterns in terms of the concepts we

have introduced or will introduce. In subsection S5.5.3, we will analyze traveling waves

— a subset of dynamic spatial patterns — more closely.

STATIC PATTERNS

While the focus of this work is mainly on dynamic patterns, we also observed static pat-

terns with a high degree of spatial organization in all two-gene networks studied. They

commonly arise after a relatively short transient phase (10s-100s of time steps) and can

have different shapes and compositions of cell states (i.e. the cells can have different

combinations of gene expression). In terms of shape, most patterns consist of one or

more islands or stripes of cells with a different cell state from the surrounding cells. Since

there is no Turing mechanism in our system, we did not identify a natural length scale for

the patterns, although changing parameters did seem to affect the size of structures such

as islands. Patterns were most commonly observed to have two sets of cell states, where

one group of cells has one cell state and the other group has another cell state. Patterns

with three cell states are rare, but not impossible to generate. We did not observe any

patterns where all four cell states existed concurrently. The most common static pat-

terns are ones that also arise in the model with one signaling molecule and consist of

one group of cells with a given gene ON and another group with that gene OFF. In the

case of two molecules, it is common to find islands with both genes ON (or OFF) with

the rest of the system consisting of cells with both genes OFF (or ON). We also observed

patterns where the two genes were mutually exclusive, i.e. if a cell has gene 1 ON, it has

gene 2 OFF, and vice versa. Finally, we occasionally found a boundary layer separating

an region with similar gene expression (e.g. island or stripe) from the rest of the cells

with a different cell state than either the region or the rest of the cells.

DYNAMIC TEMPORAL PATTERNS

Dynamic temporal patterns are periodic steady states where the system returns to an

earlier state after a finite number of time steps τ > 1 (the period of the oscillation), but

do not propagate information across space.

Single-cell oscillations Oscillations can arise at the single-cell level in the case of one

gene with a negative feedback loop. If certain parameter constraints are satisfied, the
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gene expression level of a single cell oscillates between ON and OFF indefinitely. These

oscillations are the result of our adiabatic description, where we assume that cells re-

spond slowly compared to the time for signaling molecule concentrations to reach a

steady state. An ON-cell turns OFF because the concentration it senses is high enough to

suddenly switch to the other state. The OFF-cell then senses a low concentration and the

cell switches to the other extreme immediately, without ever reaching the intermediate

steady state.

With two genes, oscillations at the single cell level remain relatively simple and can only

have periods up to four, since there are only four cell states with two genes. In practice,

by examining all possible single-cell state diagrams (Section S5.5.2), we found that the

vast majority of single-cell oscillations were of period 2 (see Figure S5.1C). Single-cell

period 2 oscillations arise in all networks that can generate dynamic patterns (temporal

or spatial), while period 4 oscillations arise only in networks with an incoherent mutual

feedback (i.e., for all networks generating dynamic spatial patterns in Figure 5.3D as well

as Network 14 in Figure 5.3C).

We can interpret these results by looking at the three core network structure that give

rise to most dynamic patterns (Table S5.1). For each of the motifs, the interpretation of

the oscillations is straightforward. For mutual repression (Table S5.1 – top row), a cell is

able to oscillate between (0,0) and (1,1), whereas (0,1) and (1,0) are stable states. When

both genes are off, both are unrepressed and will turn on the next time step, after which

they are both repressed and turn off again. However, if only one of the genes is on, it

represses the other gene but is not repressed itself. For mutual activation (Table S5.1 –

middle row), the oscillation is between the states (0,1) and (1,0). Each gene can turn

on the other, but turns off when the other gene is on. However, if both genes are ON,

they sustained each other, whereas if neither is ON, they also cannot turn ON. Finally,

for a positive-negative loop (Table S5.1 – bottom row), the system undergoes a period 4

oscillation between the four states. These results obviously depend on the parameters

chosen, but it is intuitive that they should be possible for some set of parameters. Again,

these results rely on the separation of time scales between the relaxation of the signaling

molecule concentrations and the response of the cells.
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Name Network topology Single-cell state dia-

gram

Coherent mutual feedback (-/-) 1 2

(0,0) (1,0)

(0,1) (1,1)

Coherent mutual feedback (+/+) 1 2

(0,0) (1,0)

(0,1) (1,1)

Incoherent mutual feedback (+/-) 1 2

(0,0) (1,0)

(0,1) (1,1)

Table S5.1: Two gene network motifs generating oscillations. The three core topologies for mutual interaction
between the two genes are shown together with typical single-cell state diagrams showing oscillations. The
state diagrams are for the case when the concentration of the regulator genes always surpass the threshold

when the gene is ON and is below the threshold when it is OFF, i.e. C
( j )
ON > K (i j ) >C

( j )
OF F for all genes i , j .

Synchronization of single-cell oscillations Oscillations persist on a multicellular level,

with cells synchronizing their oscillations depending on how strongly the cells inter-

act. The degree of synchronization is reflected in the proportion of cells that oscillates

together, as well as how they are spatially arranged (e.g. we would consider an oscil-

lating island more synchronized than randomly distributed cells that oscillate in sync).

Generally, the oscillations in the multicellular system can vary between completely au-

tonomous (i.e., each cell independently oscillates) to completely synchronized (i.e., all

cells oscillate synchronously; see Figure 5.2I). Full autonomy is reached if and only if

each of the interactions is in the autonomous (A01) phase (see Section S5.5.2). Full syn-

chronization can be reached for a variety of other parameter conditions. In between, the

system can partially synchronize and exhibit domains of cells oscillating together that

do not extend over the entire lattice. Oscillatory cells can also co-exist with stationary

cells that are in one of the stationary states (for negative-negative or positive-positive

feedback).

Complex dynamic temporal patterns We distinguish between “simple” oscillations,

which are superpositions of single-cell oscillations and thus have a period of at most

four, and more complex oscillations, which we will describe here. Oscillations of a more
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complicated form arise in the networks that are capable of generating dynamic spatial

patterns. Each of these networks produces a wide range of periods with τ ≥ 5 (Figure

S5.1D), most of which correspond to dynamic temporal patterns. Typically, they feature

oscillating domains that coexist with a background of static cells (e.g., the oscillating

island in Figure 5.2H), but where different cells in the domain undergo different cycles

of gene expression states over time. This can give rise to complicated temporal patterns

because the oscillatory sequences of individual cells may not line up, especially when

they are incommensurable.

These complex periods are indeed associated with dynamic patterns, as we can verify

by measuring their degree of spatial order using the spatial index I (i ). Overall, steady

states with a period τ ≥ 5 tend to have higher values of I (i ) for both genes (yellow and

purple lines in Figure S5.1E), indicating that they tend to be more spatially ordered than

oscillations with simple periods (red lines in Figure S5.1E) and static patterns (blue lines

in Figure S5.1E).

DYNAMIC SPATIAL PATTERNS

Dynamic spatial patterns are characterized by gene expression profiles that translate

across space, thereby allowing propagation of information across the multicellular sys-

tem. These can be rigid profiles of gene expression that move across the system without

changing shape, but we also count patterns that move and morph (i.e. change shape)

at the same time as dynamic spatial patterns. Note that these patterns require periodic

boundary conditions to be sustained indefinitely.

Traveling waves Traveling waves are characterized by stripes of cells that translate across

the lattice in a regular fashion (see Figure 5.2A, 5.2C-E and 5.2G for examples). They typ-

ically consist of three types of cells (with different states) and travel on a background

consisting of cells of the fourth type. When two traveling waves in opposite directions

collide, they typically annihilate each other, leaving a void of cells with the background

state. Characteristics of traveling waves and their propagation conditions will be dis-

cussed in subsection S5.5.3.

Complex wavelets In a number of cases, we observed complex wavelets that propagate

indefinitely without repeating themselves, within the maximum simulation time (Figure

5.2B). Since the total number of system states is limited to 2N , these waves will eventually

settle down to a steady state. The transient wave patterns they generate look very similar

to (less coordinated) traveling waves, and arise as transient states during the generation

of all types of dynamic spatial patterns described here.
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Spiral and concentric waves Spiral and concentric waves are similar to traveling waves

with the main difference that their orientation is outward from a source or center rather

than linear in a fixed direction (Figure 5.2F). Locally, they typically look like traveling

waves, with the same set of cell states as in traveling waves. Due to annihilation of col-

liding waves, spiral and concentric waves are less stable, since only particular configura-

tions where the outcome of the collision is an earlier spiral wave pattern will be observed

as persistent spiral waves. It is more common to observe spirals and concentric waves

as transient patterns that are created and annihilated repeatedly, until the system settles

down to a more stable configuration such as a traveling wave.

Traveling pulses We also observe small, localized patterns of a few cells that translate

across the lattice in a regular way. They are similar to traveling waves, but the traveling

pulses are small, localized patterns that do not span the entire size of the system.

Oscillatory traveling waves In networks 16, 20 and 43 — characterized by the incoher-

ent mutual feedback motif without positive self-regulations (Figure 5.3D) — we found

oscillatory traveling waves where both the wave states and the background state oscil-

late over time (Examples in Figure S5.6). At any given fixed time, these waves typically

look similar to the non-oscillatory traveling wave, but due to the oscillations the dynam-

ics is different. Perfectly aligned waves where each wave state occupies a single band of

cells are relatively rare. Most waves have bands that occupy the width of more than one

cell (see for instance Figure S5.6B). The waves undergo a successive sequence of static

oscillations followed by an translation (Figure S5.6D). Details of their dynamics are fur-

ther discussed in Section S5.5.3.
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A B C

Straight wave with 
oscillating background

(Dialogue 16)

Complex wave with 
oscillating background

(Dialogue 20)

Shape-changing
oscillating island

(Dialogue 43)

24
frames

18
frames

(0,0) (1,0)

(1,1)(0,1)

(0,0) (1,0)

(1,1)(0,1)
Dialogue 16  A

Dialogue 20  B

Front
Middle 
Back
External

D

Dialogue 43        A or B

Diagram
Diagram A Diagram B

Figure S5.6: Dynamic patterns with oscillating cells and their associated state diagrams. (Related to Figure
5.3) (A-C) Examples of dynamic spatial patterns with oscillating cells (in blue) in their background, generated
by cellular dialogues 16, 20, and 43 (see Figure 5.3D). Time progresses vertically downwards, with subsequent
frames separated by one timestep unless indicated otherwise. (D) State diagrams showing all possible ways
that a cell’s gene-expression can change over time, for cellular dialogues 16, 20, and 43 shown in (A-C) (see
Section S5.5.2). Every cell shown in the filmstrips of (A-C) cycle through three different states before the pat-
tern moves to the next row of cells. The transitions between these single-cell states (nodes in the graphs) are
depicted in the state diagrams as directed cycles of a graph. Different colors indicate different relative positions
of the cells (matching the colors in Figure 5.4A). One of these transitions — indicated by the dashed lines — is
concurrent with the displacement of the pattern. There are two possible state diagrams for the three cellular
dialogues that generate oscillatory dynamic spatial-patterns, as indicated in this table.
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S5.5.2. PARAMETER-DERIVED GENERAL CONSTRAINTS ON THE DYNAMICS

In this subsection, we derive a number of a methods to derive general constraints on the

dynamics of the system from the parameters of that system. First, we introduce the con-

cept of dynamical phase for each regulatory interaction between two (possibly identical)

signaling molecules. Next, we introduce the concept of state diagram — a graphical way

to represent transitions between cell states — and discuss their usefulness in deducing

constraints on the system’s dynamics. We then derive general constraints on the dynam-

ics of a system with multiple signaling molecules, which arise as special combinations

of these phases. Finally, we present a formal algorithm to calculate the dynamical con-

straints and represent them in a state diagram for any set of arbitrary parameters.

DYNAMICAL PHASES FOR EACH INTERACTION

The idea behind dynamical phases is based on the observation that for extreme param-

eter values, the behavior of the system becomes predictable. For instance, if the interac-

tion between cells is very strong and the threshold values characterizing their response

are very low, then we expect the cells to always exceed these thresholds regardless of

the precise states of the cells. These ideas were made precise in our previous work for

systems with one signaling molecule, which represented these dynamical constraints as

“phenotype functions” on a “phenotype diagram” [Maire & Youk, 2015a]. In this work,

we extend this formalism to a more general framework applicable to multiple interac-

tions.

Consider an interaction between two genes where a regulating gene j controls the ex-

pression of the regulated gene i (possibly i = j ). The interaction is specified by the

threshold K (i j ) for turning the gene ON/OFF (depending on whether the interaction is

activating or repressive), and the ON-secretion rate C ( j )
ON . Suppose the cells have an effec-

tive distance a0 to their nearest neighbors, and lead to an interaction strength f ( j )
N (a0).

Recall that the outcome of the interaction is specified by g (i j )(X). We then distinguish

the following phases:

1. P1: sensed concentration permanently above threshold. The phase is defined by

(1+ f ( j )
N )C ( j )

OF F > K (i j ). For an activating interaction, this implies that g (i j )(X) = 1

for any system state X. The interaction is always ON. For a repressive interaction,

we have g (i j )(X) = 0 and the interaction is always OFF. For a single activating inter-

action, this corresponds to the all ON phase — all cells in the system turn ON in

one time step and remain ON.

2. P0: sensed concentration permanently below threshold. The phase is defined by

(1+ f ( j )
N )C ( j )

ON < K (i j ). For an activating interaction this implies g (i j )(X) = 0 and

for a repressive interaction g (i j )(X) = 1. For a single activating interaction, this
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corresponds to the all OFF phase — all cells in the system turn OFF in one time

step and remain OFF.

3. A1: autonomy whenever the regulating gene is ON. The phase is defined by C ( j )
ON +

f ( j )
N C ( j )

OF F > K (i j ). For an activating interaction, this implies that g (i j )
k (X) = 1 when-

ever X ( j )
k = 1. This means that the interaction is always ON in a cell k whenever

gene j is ON regardless of the rest of the cells. However, when gene j is OFF,

whether the interaction will be ON depends on the state of other cells. For re-

pression, g (i j )
k (X) = 0 whenever X ( j )

k = 1. In this case, the interaction is always OFF

in cell k whenever it has gene j ON. For a single activating interaction, this corre-

sponds to the activation phase, whereby ON cells remain ON regardless of the rest

of the system.

4. A0: autonomy whenever the regulating gene is OFF. The phase is defined by C ( j )
OF F +

f ( j )
N C ( j )

ON < K (i j ). This is analogous to the previous case with some roles switches.

For activation, we get g (i j )
k (X) = 0 whenever X ( j )

k = 0. For repression, g (i j )
k (X) = 1

whenever X ( j )
k = 0. For a single activating interaction, this corresponds to the deac-

tivation phase, whereby OFF cells remain OFF regardless of the rest of the system.

5. A01: autonomy regardless of whether the regulating gene is ON or OFF. This phase

is defined by parameter values for which both inequalities of A1 and A0 hold.

These conditions can only be met simultaneously if f ( j )
N < 1. For activation, it

implies that g (i j )
k (X) = X ( j )

k . More explicitly, it means that g (i j )
k (X) = 1 whenever

X ( j )
k = 1 and g (i j )

k (X) = 0 whenever X ( j )
k = 0. Hence X ( j )

k fully determines fate of

the interaction. For repression, the roles are reversed and g (i j )
k (X) = 1−X ( j )

k . For a

single activating interaction, this corresponds to the autonomy phase — ON cells

remain ON and OFF cells remain OFF.

6. U: unconstrained. This phase is defined by parameter values for which the con-

ditions of neither A0 nor A1 are true. Hence, we have C ( j )
ON + f ( j )

N C ( j )
OF F < K (i j )

and C ( j )
OF F + f ( j )

N C ( j )
ON > K (i j ). These conditions can only be met simultaneously

if f ( j )
N > 1. In this phase, we cannot deduce any general constraints on g (i j )

k (X)

and have to look at the specific system state X to determine whether an interac-

tion will be ON or OFF. For a single activating interaction, this corresponds to the

activation-deactivation phase, whereby cells can both activate (turn ON) as well as

deactivate (turn OFF) other cells.

The interpretation of these phases are best understood for a system with only one sig-

naling molecule. For now, note that the phases P0 and P1 make the interaction trivial

— the outcome is always known regardless of the state of the cell itself or its neighbors.

The phases A0, A1 and A01 place constraints which are dependent on the current state
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of the cell, and the phase U does not place any constraints on the system’s dynamics.

For a system with multiple signaling molecules, each interaction will be characterized

by one phase. The obvious next question is how to put together the constraints from

these different interactions to derive general constraints on the system’s dynamics.

For two molecules, we can represent the phase regions and phases of each interaction

together on a “phenotype diagram” consisting of two plots, as shown in Figure S5.7C.

In this example, each of the interactions lies in a colored region representing the phase.

Specifically, the activation 1 ← 2 is in the A0 phase (lower figure, circle with “1”). As this

is the only regulatory interaction on gene 1, we now immediately deduce features of the

dynamics of gene 1. Specifically, we now know that whenever gene 2 is OFF in a cell,

gene 1 will always be inactivated (OFF) the next time step. Similarly, the repression 1 a 2

is in the A01 phase, meaning that if gene 1 is ON, then gene 2 will always be repressed.

However, if gene 1 is OFF, then it does not repress gene 2, but whether the latter turns

on depends also on the result of its own interaction. More generally, we can combine all

these phase constraints into general constraints on the dynamics of the system. In the

next subsection, we consider limits where the phase constraints completely constrain

each cell’s dynamics.

STATE DIAGRAMS

The basic idea of the state diagram is that it displays all the possible transitions between

different cell states of a system. The concept of state diagram has been explored in ear-

lier work on modeling genetic circuits with binary expression states [Thomas, 1990], but

has been limited to models of gene circuits at the single-cell level. In our case, the cell

states are the binary states X = (X (1), . . . , X (l )) ∈ {0,1}l specifying for a given cell whether

each gene is ON or OFF. For one signaling molecule, there are only two cell states, 0 and

1. For two signaling molecules, we distinguish the four cell states (0,0), (0,1), (1,0) and

(1,1). If a cell in a given cell state X can adopt the state Y after one time step — either

under its own influence or through sensing molecules secreted by other cells — then we

draw an arrow between the states X and Y .

For a single interaction, the procedure is straightforward and the diagrams are simple

to interpret (see Figure S5.7A). For instance, the P1 phase with activation means that

cells always turn ON after one time step, hence giving the diagram with all arrows go-

ing to the 1 state and no other arrows. For A01 with an activating interaction, the cells

are autonomous, so 0 remains 0 and 1 remains 1. However, A01 with repressive inter-

action gives oscillations between 0 and 1. An ON-cell always turns OFF because it will

always sense a concentration above the threshold, repressing its gene expression, while
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an OFF-cell will always turn ON because its sensed concentration will always be below

the threshold, leaving the gene unrepressed. The collective set of possible transitions is

then displayed as a diagram with the cell states and possible transitions.

For two genes, the interpretation is analogous. We draw a directed graph with the four

cell states (0,0), (0,1), (1,0) and (1,1) as nodes and directed edges between these states to

indicate (possible) transitions between the states. In Figure 5.4E, in the left diagram for

dialogue 14, the transitions are heavily constrained. Each of the four states leads only to

one other possible state. This completely constrains the dynamics of the system, so that

it becomes completely predictable — any cell’s dynamics in the system is completely de-

termined by the transitions in one diagram. As such, this state diagram does not allow

for multicellular pattern formation, as all individual cells will oscillate individually. In

contrast, if we take a diagram such as the one depicted for dialogue 15 (Figure 5.4E), the

dynamics of the system is not entirely constrained. The state (0,0) has two arrows leaving

from it, indicating that either transition is possible, depending on the exact concentra-

tion a cell senses. As such, it allows for a pattern such as a traveling wave to propagate,

because cells of the same state do not always evolve in the same way, but evolve de-

pending on the other cells in the system. In practice, the state diagram of dialogue 14

(Figure 5.4E – left figure) can be realized under a diverse range of parameter conditions,

whereas the diagrams for dialogues 15 and 19 (Figure 5.4E – right figure) are never real-

ized without additional transitions that we have not drawn in the diagrams here. Note

that without additional knowledge, traveling waves are in principle compatible with all

diagrams containing the diagrams in Figure 5.4E – right figure as subdiagram. However,

the wave can propagate if and only if the particular wave states that we identified (Fig-

ure 5.4 and subsection S5.5.3) follow the transitions depicted in the figure. This is not

information contained in the diagram itself and must be obtained from further exam-

ination and calculation — the state diagrams merely represent the set of possible cell

state transitions given knowledge of the parameter of the system.

Two properties of the system are immediately evident from the graphical representation

of the state diagram. To begin with, a state diagram tells us which cell states could poten-

tially be stationary. Such states must have an arrow to themselves in the state diagram,

which we call a self-transition. Should the system reach a non-oscillatory steady state,

then that final state can only be composed of cell states which have a self-transition.

If there are no self-transitions, then the system cannot generate stationary patterns —

this happens for instance in dialogue 14 with certain parameters, which can produce

the state diagram shown in Figure 5.4E. If there is only one self-transition, then the only

possible stationary steady state is a uniform system where all cells have the state with
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the self-transition. Conversely, not all cell states with a self-transition need to appear in

a stationary system state. In other words, having a self-transition does not imply that

the state appears in any stationary pattern. As an extreme example, the system could

have a fully connected state diagram, where each transition between two cell states is in

principle possible. However, this system could still generate a uniform lattice of cells as

final state if the parameters are chosen appropriately.

Secondly, the state diagrams show whether periodic steady states (e.g. oscillations) are

possible. For any periodic steady state, all cells must revisit their earlier state after τ> 1

number of time steps, where τ is the period of the oscillatory state. This implies that

the state diagram should permit cells to return to their initial states after a finite number

of time steps, and after passing through other states (otherwise it would be a stationary

pattern). This is only possible if the state diagram contains cycles, i.e. closed loops ob-

tained by tracing the edges of the graph from some initial state. The presence of cycles

is thus a necessary condition for oscillations. However, it is not a sufficient condition for

generating dynamic temporal patterns. This is because it is not guaranteed that a cell

can traverse the edges of any cycle one by one when there are possible “routes” on the

graph. Each transition then corresponds to a specific condition which depends on the

state of all cells of the system. We cannot directly deduce whether a sequence of such

transitions is possible at the level of the entire system of N cells. This is only possible in

the special case that all transitions of the cycle are deterministic, i.e. when each node is

connected to a unique other node on the graph. We then obtain an oscillation, with a

period equal to the length of the cycle.

In summary, the state diagram allows us to deduce two basic properties of our system

without running simulations: the set of stationary cell states and the capacity of generat-

ing dynamic patterns. These are not purely mathematical properties but have biological

relevance. The former is an indicator of multistability and tells us whether a population

of identical cells could potentially diversify, generating stable configurations with multi-

ple gene expression profiles. This is known as phenotypic heterogeneity, a phenomenon

that has seen many experimental studies dedicated to it and may have a wide range of

biological functions [Ackermann, 2015]. The latter tells us whether a multicellular sys-

tem could potentially sustain oscillations, waves or other dynamic patterns (consult the

main text for biological examples).

SIMPLIFIED DYNAMICS

There are two limits in which the dynamics of the system simplifies dramatically.
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1. All interactions are either extremely weak or extremely strong. To be precise, this

is the case if each of the interactions is in either the P0 or the P1 phase (all ON/all

OFF phase). The system homogenizes after one time step, because each of the

interactions is either ON or OFF for all cells in the system. For a spatially uniform

system, the dynamics is simple and predictable.

2. All interactions are moderately strong, and the interaction between cells is rela-

tively weak. In more precise terms, suppose all interactions are in the A01 phase.

In this case the dynamics of each cell becomes equivalent to that of a single cell.

The system is fully autonomous and each cell evolves under its own influence.

In these limits the state diagrams are identical to single-cell state diagrams with rescaled

parameters. Therefore, these phases contain only deterministic state diagrams. Thus we

know the exact dynamics of the system without running any simulations, for any initial

conditions.

Formal derivation Let us show these two limits more explicitly. Let k be arbitrary, and

(i , j ) be an arbitrary pair of genes with M (i j )
int 6= 0. Suppose this interaction is in the P0

phase. Then as a result of (1+ f ( j )
N )C ( j )

OF F < K (i j ), we have

g (i j )
P0 ≡ g (i j )

k (X) =
0 if M (i j )

int = 1

1 if M (i j )
int =−1

That is to say, g (i j )
k (X) becomes independent of both X and k. Likewise, in the P1 phase

we get g (i j )
k (X) ≡ g (i j )

P1 , with g (i j )
P1 = 1− g (i j )

P0 . Now suppose all interactions are either in

Figure S5.7 (preceding page): Directed graph (state diagram) representation of reveals all the ways in which
a cell’s gene expression can change and, in turn, what kinds of patterns can form at the population level
(also see Section S5.5.2). (Related to Figure 5.3) Section S5.5.2 describes in detail how we obtain a directed
graph (state diagram) representation for every cellular dialogue. A directed graph representation allows us to
determine which cellular dialogue and for which sets of parameter values a periodic steady-state (dynamic
patterns) and/or stationary steady-state (static spatial-configurations) can form without having to run any
simulations. (A) Overview of all state diagrams for one signaling molecule, corresponding to the six different
dynamic phases (Section S5.5.2) for self-activation (left) and self-inhibition (right). (B) Schematic of a cellular
dialogue with two signaling molecules. (C) A phase diagram — first introduced in [Maire and Youk, 2015a] and
described in Section S5.5.2 — shows the phase (colored region) associated with each regulatory interaction of

a cellular dialogue as function of the threshold concentration K (i j ) and maximal secretion rate C
( j )
ON for every

regulatory interaction i ← j . (D) Each phase imposes different constraints on each regulatory interaction of a
cellular dialogue. The regulated gene may be activated (or repressed), or the outcome is unknown and depends
on other elements (indicated by “?”). (E-F) Considering the constraints imposed by the phase diagrams, we
constructed state diagrams that summarize all possible temporal changes that a cell’s gene-expression can
have. Solid lines indicate deterministic transitions, whereas dashed lines indicate that a cell can have multiple
possible transitions to a different gene-expression state. (E) A state diagram for a population of one cell. (F)
State diagram for a population of multiple cells.
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the P0 or P1 phase. Then, X ( j )
k (t +1) = ∏

j g (i j )
k (X) = ∏

j g (i j )
c j

with c j ∈ {P0,P1}. Hence,

X ( j )
k (t+1) is also independent of both X and k. Therefore, all cells become identical after

one time step. For an identical lattice with all cells in a state X , we note that each cell

senses a concentration Y ( j ) = (1+ f ( j )
N )C ( j )(X ( j )). However, K (i j ) and other parameters

are unchanged. Therefore, the evolution of a uniform lattice is equivalent to that of a

single cell with a rescaled secretion rate C ( j )(X ) → (1+ f ( j )
N )C ( j )(X ).

Next, consider the case that all interactions are in the A01 phase. Again, let k and (i , j ) be

arbitrary with M (i j )
int 6= 0. Let X be an arbitrary state of the system, and write X = (Xk , Zk ),

with Zk = {Xl }l 6=k . Then the A01 phase puts the following constraints on the system:

Y ( j )(Xk = 1, Zk ) ≥C ( j )
ON + f ( j )

N C ( j )
OF F > K (i j ),

Y ( j )(Xk = 0, Zk ) ≤C ( j )
OF F + f ( j )

N C ( j )
ON < K (i j ). (S5.19)

We see that any cell with gene j ON will always satisfy the first constraint, regardless of

the rest of the system. Likewise, any cell with gene j OFF will always satisfy the second

constraint. As a result, g (i j )(Xk ; Zk ) = g (i j )(Xk ) becomes independent of Zk , the states

of all cells other than k in the system. Therefore, X (i )
k (t + 1) = ∏

j g (i j )(Xk (t ); Zk (t )) =
g (i j )(Xk (t )) depends only on Xk (t ). In other words, the evolution of any cell in the system

is independent of the state of the other cells.

ALGORITHM FOR COMPUTING STATE DIAGRAMS

In this subsection, we present a general method for computing the state diagram for a

system of one or two genes, given an arbitrary set of system parameters. The construc-

tion for two genes can be readily generalized to systems with more than two genes.

For a single gene, we state diagrams follow straightforwardly from the definition of the

phases (subsection S5.5.2). The end result can be represented as a directed graph with

two nodes (representing ON and OFF state of the gene) and up to four edges, which we

can describe using its adjacency matrix

A =
(

A00 A01

A10 A11

)
. (S5.20)

The adjacency matrix gives information on whether edges are present for each potential

link between two nodes. The entries Ai j ∈ {0,1} are for transitions from state i to state j .

If Ai j = 1, a transition i → j is possible and we draw an edge between the two nodes. If

Ai j = 0, i cannot transition to j and we draw no edge.

As an example, consider cells with a single signaling molecule with negative feedback to
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itself. The graphs for positive feedback are deduced in a similar way. In the P1 phase,

the system is permanently repressed, so all states go to the 0 state. Hence A = (
1 0
1 0

)
. By

contrast, in the P0 state, both ON and OFF cells always turn ON at the next time step,

so A = (
0 1
0 1

)
. In the A1 state, ON cells always turn OFF, but we do not know anything

about the OFF cells. Hence both transitions 0 → 0 and 0 → 1 are possible. Therefore,

A = (
1 1
1 0

)
. Conversely, in the A0 phase, only OFF cells are constrained to always turn on,

so A = (
0 1
1 1

)
. In the A01 phase, OFF cells turn ON and ON cells turn OFF, so A = (

1 0
0 1

)
.

Finally, in the U phase, all transitions are unconstrained, so A = (
1 1
1 1

)
.

For systems with two or more genes, the procedure of deriving state diagrams is consid-

erably more involved. We first outline the intuitive idea behind this derivation and then

provide a formal, mathematical derivation of the construction. With two mutually inter-

acting signaling molecules, the dynamics of a gene i depends in general on both regula-

tion by itself and regulation by the other gene, which we label j . If we know the phases of

both regulations i ← i and i ← j , then we can deduce the constraints they impose on the

dynamics of i . To do this, we have to combine the constraints from both regulatory inter-

actions i ← i and i ← j , for which we employ a three-valued logic operation. Intuitively,

this three-valued logic system represents the fact that there are three possible outcomes

of each interaction: the regulated gene is activated, the regulated gene is repressed or the

outcome is unknown. Hence, we need to know what the final response of gene i is for

each combination of the three outcomes for both of the two regulatory interactions. For

instance, suppose that both i and j positively regulate i (i.e. M (i i )
int = M (i j )

int = 1), but the

interaction i ← i is always activating (i.e., the sensed concentration of i always exceeds

the threshold K (i i )) while the interaction i ← j is unknown. Then the final outcome for

gene i is unknown, because both positive interactions must be activating for the gene to

turn on. Next, recall that the phases in general place dynamical constraints that depend

on the state of the system. Concretely, this means that the constraint placed by i on itself

depends on whether it is ON or OFF, and the same holds for the constraint placed by

gene j . Therefore, for each combination of states for genes i and j — there are four of

these, corresponding to the four cell states (0,0), (0,1), (1,0) and (1,1) — we could have

a different set of constraints on the dynamics for gene i . Thus, we have to separately

consider each of the four cell states and see which constraints they impose on the dy-

namics of both gene i and gene j . In this way, for each cell state, we obtain all possible

cell states to which it can transition to and draw the corresponding edges on the graph.

This eventually gives us our state diagram.
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Formal derivation of the algorithm for computing state diagrams First, we note that

the four-node graph with up to 16 edges is now represented by a 4×4 adjacency matrix,

which we will denote

A =


A(0,0)→(0,0) A(0,0)→(1,0) A(0,0)→(0,1) A(0,0)→(1,1)

A(1,0)→(0,0) A(1,0)→(1,0) A(1,0)→(0,1) A(1,0)→(1,1)

A(0,1)→(0,0) A(0,1)→(1,0) A(0,1)→(0,1) A(0,1)→(1,1)

A(1,1)→(0,0) A(1,1)→(1,0) A(1,1)→(0,1) A(1,1)→(1,1)

 . (S5.21)

The interpretation is the same: the state (i , j ) can transition into the state (k, l ) if and only

if A(i , j )→(k,l ) = 1, and we represent this graphically by drawing a directed edge between

(i , j ) and (k, l ). Our goal is then to combine the constraints imposed by the different

phases for each interaction to compute this adjacency matrix.

Recall that the time evolution for a cell determined by X (i )(t + 1) = ∏
g i j (X(t )). This is

a deterministic equation for X (i )(t ) when we know the precise input system state X(t ).

Now suppose we only know the cell’s own state X = (X (1), X (2)) and the phase of each

interaction i ← j . We want to calculate the set of possible output cell states for X (t +1).

To do this, we introduce a set of three-valued logic states S = {0,1,2} and a logic AND

function ∧ : S → S defined by the truth table


a ∧b b = 0 b = 1 b = 2

a = 0 0 0 0

a = 1 0 1 2

a = 2 0 2 2

 (S5.22)

This 3-valued logic system is known as the Kleene logic. It has a third logic value UN-

KNOWN in addition to TRUE and FALSE. In our notation, 0=FALSE, 1=TRUE and 2=UN-

KNOWN. The UNKNOWN value can be interpreted a state that can be either TRUE or

FALSE. When combined with a FALSE value, we know for sure that FALSE ∧ UNKNOWN

= FALSE, since both FALSE∧ FALSE = FALSE and FALSE∧TRUE = FALSE. However, TRUE

∧ FALSE = FALSE while TRUE ∧ TRUE = TRUE, and therefore TRUE ∧ UNKNOWN = UN-

KNOWN.

We employ the three-valued logic system as follows: whenever a cell state has uncertain

transitions (i.e. can transition to multiple output states), we assign a value of 2 (UN-

KNOWN) to it. This also allows us to combine unknown outcomes from different in-

teractions. Any remaining undetermined transitions imply that there are cell states for

which multiple transitions are possible.
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Concretely, define g (i j )(X ) ∈ S as the outcome of the interaction i → j for a given input

cell states X . Note that it takes value in S, indicating that the interaction is either on, off

or the outcome is unknown. Let Zout (X ) = (Z (1)
out (X ), Z (2)

out (X )) be the three-valued output

state given input state X . We construct the output state as follows:

Z (1)
out (X ) = g (11)(X )∧ g (12)(X )

Z (2)
out (X ) = g (21)(X )∧ g (22)(X ). (S5.23)

Here we have replaced ordinary multiplication by the∧operation that takes into account

unknown outcomes. This three-valued output state needs to be translated to the actual

possible output (binary) cell states of the system. Intuitively, if there is an unknown out-

come, i.e. Z (i )
out = 2 for some i , then we should take into account all possible outcomes of

that state. Hence we should consider states with both Z (i )
out = 0 and Z (i )

out = 1.

Formally, let us denote the set of possible output cell states as Σout (X ), with elements in

{0,1}2. We construct the setΣout (X ) through the construction of two maps. Let P ({0,1}) =
{;,0,1, {0,1}} denote the power set of {0,1}. First we define a map

σ1 : S →P ({0,1})

x 7→
x x ∈ {0,1}

{0,1} x = 2
(S5.24)

This map constructs the set of possible output gene states, by deconstructing the ele-

ment 2 ∈ S into the set {0,1} of possible outcomes. Extend the map to S2 by defining

σ : S2 →P ({0,1})2 as σ(Z ) = (σ1(Z (1)),σ1(Z (2))).

Next, we have to put together the deconstructions to arrive at a set of output cell states.

Recall that X (2)
1 = {(0,0), (0,1), (1,0), (1,1)} is the phase space of a single cell with two

genes. We define a map

τ : P ({0,1})×P ({0,1}) →P (X (2)
1 )

(x1, x2) 7→ x1 ×x2, (S5.25)

where the × denotes an ordinary Cartesian product between sets. For instance, if x1 =
{0,1} and x2 = 1, then x1 × x2 = {(0,1), (1,1)}. Hence, the second map constructs all the

possible cell states from the possible states for each gene. Putting it together, we con-

struct the set of output cell states as

Σout (X ) = (τ◦σ◦Zout )(X ). (S5.26)
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Finally, once we have the output cell states for our input state X , we set

AX→Y = 1, ∀Y ∈Σout (X ). (S5.27)

In other words, we draw edges from X to all cell states in the set of possible output states

Σout (X ). Doing this for all input states X gives us the full adjacency matrix for the state

diagram.
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S5.5.3. ANALYTIC FRAMEWORK FOR TRAVELING WAVE PROPAGATION

In this section, we provide a detailed analysis of traveling waves moving on a constant

background of cells, which are found in cellular dialogues 15, 19, 33, 34 and 36. We first

discuss features of traveling waves that characterize and distinguish different instances

of traveling waves (Section S5.5.3). These features are used in an analytic estimate of the

density of traveling wave states in the overall system in Section S5.5.3. The core of this

section is composed of a derivation of a set of conditions for TW propagation (Section

S5.5.3). We then discuss the performance of the analytic theory in terms of how well it

recapitulates simulation results in Section S5.5.3. Finally, we sketch how to extend our

method to dynamic patterns on an oscillatory background in Section S5.5.3.

FEATURES OF TRAVELING WAVES

The traveling waves that we observe can be distinguished from each other through a

number of features:

1. Orientation and direction of the wave. The waves can be oriented in different ways

and for each cellular dialogue we observe waves of all different orientations. We

distinguish between horizontally, vertically and diagonally oriented waves (see e.g.

Figures 5.2C–E and 5.2G). Horizontal waves wrap around the horizontal axis once,

without wrapping around the vertical axis, and travel in the vertical direction. Ver-

tical wave wrap around the vertical axis once, without wrapping around the hor-

izontal axis, and travel in the horizontal direction. Diagonal waves wrap around

each of the two axes at least once and can travel in either direction. A more pre-

cise way of accounting for the geometry of the wave is through winding numbers,

which will be introduced in section S5.5.3.

2. Presence of bends in the wave. We distinguish between straight and bent waves

according to whether all cells in a band of the wave are aligned in the same direc-

tion. For a triangular lattice, there are three directions along which the cells can

align themselves. In one case, we get straight horizontal waves (e.g. Figure 5.2C),

whereas in the other cases we get diagonally oriented waves (e.g. Figure 5.2G).

However, we can also get waves with one or more bends (e.g. Figure 5.2E), points

at which the alignment of the cells changes direction. Note that the cells located at

the bends have a different set of nearest neighbors from the aligned cells. Further-

more, we can distinguish between bends that are in the direction of propagation

(outward bends) and bends that are opposite to the direction of propagation (in-

ward bends).

3. Number of waves. In the simplest case, the system self-organizes into a single

wave on a uniform background (e.g. Figures 5.2C and 5.2E). However, we also ob-
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serve multiple coexisting waves, separated by each other by regions of cells with

the background state (see e.g. Figures 5.2A and 5.2D). Such waves have the same

orientation and direction of travel, but are not necessarily aligned parallel with

each other.

4. Number of different cell states in the wave. For almost all the waves we observed,

we found wave made up of three different cell states. The background was made

up of the fourth cell states. The exact states which make up the wave and their

order varies from topology to topology, and sometimes also between different pa-

rameter sets of the same topology. In rare cases, we also found waves consisting of

two types of cell states on a background of a third cell state.

5. Number of bands in the wave. In most cases, we find waves consisting of single

bands of cells of the same state. Waves with bands with two or more layers of cells

and waves where different cell states have different band widths have also been

observed (see e.g. Figure 5.2C).

6. Defects. In rare cases we may see waves which contain single-cell defects such as

an additional cell of the same cell state attached to an otherwise normal wave.

ABUNDANCE OF TRAVELING WAVES

We now derive an estimate of the relative abundance of traveling waves of the forms

we observe in the system. Due to the variety of morphologies these waves can take, we

could expect them to take up a considerable portion of the total phase space. In this

scenario, finding system conditions under which most of the simulations go to traveling

waves would not be entirely surprising. On the other hand, if the relative abundance of

traveling waves in the system is low, we could interpret this as a sign that there is a self-

organizing mechanism that drives the system towards traveling wave formation.

First, we identify the key aspects of traveling waves and divide them into a limited num-

ber of categories. For each category, we then calculate the number of distinct shapes the

waves can take, as well as the total number of distinct “snapshots” each wave form is

made up of. This then gives us an estimate of the total number of states in the system

that can be considered traveling waves.

We have previously provided a list of features that distinguish traveling waves from each

other. While we have observed waves that differ in all these categories, we note that the

vast majority of waves have the same features for a number of categories. In particular,

most waves are composed of three cell states (with a fourth background state), are com-
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posed of a single band and have no defects. We also rarely observe more than two waves

propagating simultaneously in moderately large systems (e.g. N = 256). Hence we only

consider the orientation and direction, the presence of bends and the number of waves

to account for the vast majority of observed wave forms. In the following we consider a

generic single-banded wave with N = n2 cells.

The orientation of a wave can be made more precise by considering the number of times

the wave wraps around each axis. Since the system is periodic, effectively we are dealing

with wave that winds around each axis of a torus different numbers of times. Let Wx , Wy

be the winding numbers around the horizontal and vertical axis. For a plane horizontal

plane wave such as shown in Figure 5.2A, Wx = 1, Wy = 0. For a vertical wave such as

in Figure 5.2E, Wx = 0, Wy = 1. The diagonal wave in Figure 5.2G has Wx = 1, Wy = 2,

but we can also imagine diagonal waves that wrap around the system in different ways.

The most common winding numbers are listed in Table S5.2. As is apparent from the

table, we mostly observe simple waves that are either horizontal, vertical or diagonal,

but wrap around the axes only a few times. Note that traveling waves are characterized

by Wx +Wy ≥ 1, i.e. a traveling wave always wraps at least once around one of the axes.

(Smaller structures that do not wrap around either axis but do translate in space are re-

ferred to as traveling pulses).

Wx Wy NC (Wx ,Wy ) Nw f (Wx ,Wy ) T (Wx ,Wy )
1 0 n 1 n

0 1 n
(

n
1
2 n

)
n

1 1 3
2 n

(
3
2 n
1
2 n

)
2n

1 2 2n 1 2n

2 1 5
2 n

( 5
2 n
n

)
2n

Table S5.2: Main properties of most common types of waves. n is the linear grid size, with N = n2. We assume
that n is an even number, so that the system is a perfect hexagonal lattice on a torus. The data is based on
empirical observations of self-generated traveling waves. Wx ,Wy are the winding numbers, NC is the number
of cells of the wave, Nw f is the number of wave forms and T is the period of the wave.

Once we fixed the winding numbers, the precise form of the wave is often still unspec-

ified. For instance, a vertical wave can have different number of bends in both direc-

tions. Nevertheless, we can derive a general formula for the number of wave forms given

(Wx , Wy ). Let us consider a single wave that travels in a fixed direction. Suppose we pick

a random cell of the wave. Empirically, we find that each cell of the wave that has the

same state has precisely two neighbors with the same state. This is even the case when
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there are complicated bends in the wave. Now pick one of the neighbors of our selected

cell that has the same cell state. The nearest-neighbor vector that connects the two cells

lies along one of the six directions one can travel in on a hexagonal lattice. These can ex-

pressed in terms of the basis vectors of the lattice as ~e1,− ~e1, ~e2, −~e2, ~e3 ≡= ~e2−~e1, −~e3 =
~e1−~e2 (Figure S5.8B – left figure). The second cell has a unique neighbor of the same state

that we have not selected yet. The vector between the second and third cell defines a new

direction that we record. We can therefore continue this procedure and pick subsequent

cells in our wave, until we get back to our original cell. This is because the wave wraps

around an axis at least once as noted before. For each step we take, we keep track of the

direction we need to move in to get to the next cell. At the end, we count the number of

steps in each of the six directions obtained through this procedure (illustrated in Figure

S5.9B – right figure). Let us denote these by {ni ,α}, where 1 ≤ i ≤ 3 and α ∈ {−,+} . For

example, n2,− gives the number of steps we took in the −~e2 direction.

Wave forms differ by their set of nearest-neighbor vectors that we obtain with this proce-

dure. Nevertheless, once we fix the winding numbers, this constraints the possible sets

of direction vectors in a way we can make precise. First, we note that empirically we find

that waves with fixed winding numbers always have the same number of cells of a given

state, which we will denote NC
(
Wx ,Wy

)
. Empirical results for commonly found waves

are listed in Table S5.2. For instance, for a horizontal wave, we find that it always has

Nc (1,0) = n cells of a given state, which make up exactly one row of the lattice. This con-

strains the total number of nearest-neighbor vectors to NC
(
Wx ,Wy

)
, such that our first

constraint is

∑
i ,α

ni ,α = n1,−+n1,++n2,−+n2,++n3,−+n3,+ = NC
(
Wx ,Wy

)
(S5.28)

Next, the winding numbers constrain the number of occurrences of each nearest-neighbor

vector. For instance, for a horizontal wave the nearest neighbor vectors when added up

must be align in the horizontal direction, with a magnitude equal to the grid size. How-

ever, a priori this does not imply that all nearest neighbor vectors are in the ~e1 direction,

since ~e2 and ~e3 also have horizontal components. In general, the constraints are that

the number of steps taken in the horizontal and vertical directions must be equal to the

±Wx n and ±Wy n in order to return to the original cell. The sign degeneracy comes from

the fact that starting from the initial cell we pick, we can traverse the wave in two dif-

ferent directions, which yield winding numbers that differ by a minus sign. Working out



5

192 5. CELLULAR DIALOGUES

these conditions, we derive the following constraints:

n1,−−n1,+− n2,−
2

+ n2,+
2

+ n3,−
2

− n3,+
2

=±Wx n, (S5.29)

−n2,−+n2,+−n2,++n3,+ =±Wy n (S5.30)

We can now try to solve these constraints together with the general constraints 0 ≤ ni ,α ≤
n for all i , α for given winding numbers Wx , Wy . For all the winding numbers listed in

Table S5.2, we obtained solutions of the form ni1,α1 = ni1,α1 (n) > 0, ni2,α2 = ni2,α2 (n) > 0

for some i1,α1 and i2,α2, ni ,α = 0 for all other i ,α. The interpretation of this result is that

in practice all waves are formed by traveling continuously in two directions, i.e. they

never “bend back”. Secondly, we found that the number of steps in each direction is a

linear function n, so we get an explicit scaling of our results with system size.

We can now readily obtain the number of wave forms that satisfy these constraints. This

reduces to a simple combinatorics problem where the wave forms differ by the order

in which the directions i1, α1 and i2, α2 appear, in the procedure described above.

Since there are NC (Wx ,Wy ) such vectors (one for each cell of a wave layer), there are

Nw f
(
Wx ,Wy

) ≡ (
NC (Wx ,Wy )

ni1, α1

)
=

(
NC (Wx ,Wy )

ni2, α2

)
ways of ordering the vectors in either direc-

tion, corresponding to the number of possible wave forms with the given winding num-

bers. Finally, the sign degeneracy of Wx ,Wy introduces an additional factor of 2 when-

ever both Wx , Wy > 0. There are the four possibilities
(
Wx ,Wy

)
,
(
Wx ,−Wy

)
,
(−Wx ,Wy

)
,

and
(−Wx ,−Wy

)
, but only

(
Wx ,Wy

)
and

(−Wx ,−Wy
)

give equivalent waves, whereas(−Wx ,Wy
) ≡ (

Wx ,−Wy
)

yields a different wave, corresponding to a different diagonal

orientation.

The direction of a wave can in principle be in any of the six directions the hexagonal lat-

tice allows. However, once the orientation of a wave is fixed, there are only two possible

directions remaining. For instance, for a horizontal wave, the only directions are up and

down.

The number of waves that can simultaneously propagate depends on the system size.

For N = 256, we rarely observe more than two simultaneously propagating waves. Note

that the waves need to have the same orientation and direction of motion, or else they

would collide and annihilate or form new waves. Once the shapes of both waves are

fixed, an additional variable is the spacing between the waves. Assume that both waves

are horizontal, then the variable is the number of rows between the waves. For two
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waves, the distance between the waves lies in the range [1, n−6
2 ], with n−6

2 being an upper

bound for when both waves are straight. This gives a degeneracy of roughly n−6
2 . This is

because both waves take up 3 rows, and from the arrangement of the remaining rows we

take the shortest distance since the system is periodic.

Putting everything together, we now obtain our general estimate for the density of trav-

eling waves in phase space. We estimate this to be in the order of

N ndi r

∑
nw aves

ndi st (nw aves )
∑

Wx , W y

D
(
Wx ,Wy

)
Nw f

(
Wx ,Wy

)nw aves . (S5.31)

Here ndi r = 2 signifies the two directions of propagation, the first sum is over the total

number of waves in the system nw aves , the number of unique distances between the

waves is denoted ndi st , the degeneracy after accounting for negative winding numbers

is denoted D
(
Wx ,Wy

)
, and the second sum is over the winding numbers Wx , Wy ∈ N0.

From the previous part we estimate ndi st (1) = 1, ndi st (2) = n−6
2 . The final term signifies

the fact that in case of multiple waves, they can in principle have independent wave

forms (with the same direction and winding numbers). The term N in front accounts

for the possible positions of the wave on the lattice, obtained simply by counting the

number of ways to place a given cell of the wave on the lattice. This is an upper bound

since in case waves with symmetry different placements of this selected cell could still

give the same configuration.

Traveling wave formation time The aim of doing the traveling wave density estima-

tion is to provide more direct evidence for the intuitive idea that a self-organizing mech-

anism drives the formation of traveling waves (TWs), and that these do not simply arise

by chance because TW states are abundant. To do so, we looked at the TW formation

time, i.e. the number of time steps it takes to go from a random initial state to a TW. We

compared empirically observed formation times from simulations with expected simu-

lation times for a random process based on our wave density estimation. The random

process can be seen as a null hypothesis stating that there is no self-organization, but

rather TWs form by chance as the system randomly samples states in the system. To

show that there is a self-organization process, we therefore demonstrate that the find-

ings on TW formation times differ considerably from those of a random process.

More precisely, we considered a stochastic process whereby subsequent states of the

system would be randomly sampled over the set of all 2N states with a uniform distribu-

tion, i.e. each next state would be drawn from the set of all states with equal probability

for each of the 2N states. Under this assumption, the formation time of a TW would be
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equivalent to the first time of success in a Bernoulli process where the probability of suc-

cess p equals the density of TWs derived above (Equation S5.31). Hence the waiting time

— here the TW formation time — would follow a geometric distribution with the same

parameter p, with an expected waiting time of 1/p.

We first considered the expected waiting time as a function of the system size (measured

by the grid size
p

N ). For the random process described above, we obtained a mean for-

mation time that scales faster than exponentially with the grid size (Figure S5.8C – left

plot), and quickly reaches times that are orders of magnitude larger in our simulations.

Conversely, our simulated data shows that the mean formation time scales linearly with

grid size (Figure S5.8C – left plot), and has typical values well within reasonable simula-

tion time bounds.

Given this result, it is still possible that our simulations probe only the waves that form

within the limited simulation time, while the majority of other TWs have formation times

that are orders of magnitude larger. However, in this case we would obtain large frac-

tions of simulations that do not reach any steady state at our maximum simulation time,

which is not the case (see for instance Figure S5.12A — here the fraction of simulations

reaching tmax is low across most parameter sets capable of generating TWs). Further-

more, a second counterargument is that the TW formation time distribution would then

be skewed towards the right, with relatively more TWs taking times closer to the maxi-

mum simulation time. This would be necessary to produce the geometric distribution of

the Bernoulli process (Figure S5.8D – left plot). In contrast, we observed the opposite —

the simulated formation time distribution is skewed toward the left, with relatively more

wave forming within a short amount of time (Figure S5.8D – right plot).

In conclusion, we have provided evidence that traveling waves form through a self-organizing

process whereby the system ‘actively’ converges onto traveling wave attractor states,

rather than ‘passively’ exploring the state space of all possible configurations and ran-

domly finding traveling wave attractors. This result should be intuitive given the relative

ease of finding traveling waves in our simulations. Note that we have not aimed to give

a rigorous definition of self-organization in this context or formally proving our claims,

but merely want to point out that the self-organization process differs significantly from

a purely random process.

TRAVELING WAVE PROPAGATION CONDITIONS

General conditions for pattern propagation Before working out the case of traveling

waves in detail, let us discuss what pattern propagation means in general. Suppose we

have a pattern that periodically repeats itself in time. All information about the pat-

tern is encoded in the states of the pattern over one period. Let us denote these by

{X (0), X (1), . . . X (τ)}, where X (t ) = {X (i )
k (t )}1≤i≤l

1≤k≤N is the state of the system at time t as
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specified by the states of each of the genes of each cell. These can be considered a series

of snapshots of the system that make up a movie of the dynamic pattern when played.

In general, take an arbitrary state ξ(t ) and suppose that the system is updated according

to a rule

ξ (t +1) = f (ξ(t );P ) , (S5.32)

for some unspecified function f of the current state of the system that depends on the

parameters of the system denoted by P . The condition that the pattern can propagate

under the set of parameters P is precisely that f updates each snapshot of the pattern to

the next snapshot of the system. In other words, X (t +1) = f (X (t );P ) for all 0 ≤ t ≤ τ−1.

In general, this would put constraints on each of the cells of the system, leading to a

convoluted set of conditions for pattern propagation. However, in cases where the pat-

tern exhibits a symmetry, these conditions can be drastically simplified. In one extreme

case, if the pattern is a homogeneous collection of identical cells, at any time we would

only need to check one set of conditions for an arbitrary cell of the system. Conversely,

suppose the system is completely anisotropic for the whole duration of the pattern tra-

jectory. Each cell then sees a different environment at any time. We then need to check

all N × l ×τ conditions for each of the genes of each of the cells of the system, at each

time step of the system.

The case of traveling waves allows us to exploit the symmetry of the pattern to drastically

reduce the number of conditions for pattern propagation. First note that traveling waves

are characterized by the fact that the state upon updating is related to the previous state

by a simple translation in space. This means that rather than checking conditions for

each time step, we only need to check that the wave propagates at one arbitrary time

step. Furthermore, the spatial symmetry of the system allows us to check only a small

number of cells of the system, as will be explained in the next section.

Straight and bent waves To derive conditions for the propagation of these waves, we

look at straight (plane) waves (Figure 5.4A, “straight wave”), waves with a single outward

bend (Figure 5.4A, “bent wave”) and waves with a single inward bend (Figure 5.4A, “bent

wave” with reverse direction of propagation). In this way, we obtain results applicable

to the vast majority of waves observed in the system, including more complicated waves

which are typically locally still similar to these “simple” waves. For instance, the con-

figuration in Figure 5.1F contains two waves with multiple bends. However, the nearest

neighbors of any cell is identical to the neighbor structure of a cell in one of the three
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prototype waves. Namely, the cells at the tip of the wavefront have nearest neighbors

that is identical to the cell at the tip of the outward bent single wave. The cells that are

bent towards the back of the wavefront have a neighbor that is identical to those at the

bend of the inward bent wave.

Therefore, it suffices to study the conditions for propagation of each of these three simple

types of waves. This gives a first approximation to the propagation conditions for more

complicated waves, and is valid especially when the interaction between cells is not too

strong and takes place mostly on a local scale (i.e. when a0 is sufficiently high). The types

of waves which are not covered by this analysis are waves with multiple bands (because

the cells of such waves have different nearest neighbors), and waves with defects (which

are too rare to motivate analysis of each special case).

Structure of traveling waves All waves consisting of three consecutive single bands of

cells have a similar spatial structure. For any instance of such a wave, we can identify six

types of cells that each have a unique set of nearest neighbors. Let us denote these six

types of cells as follows (see Figure 5.4B):

1. EF – front exterior

2. F – front

3. M – middle

4. B – back

5. EB – back exterior

6. E – exterior

Note that the types E, EF and EB all have the same cell state (the state of the white color

in Figure 5.2A). However, we divide the exterior cells up into three classes because they

have different sets of nearest neighbors. A cell of type EF in front of the wave neighbors

F cells, whereas a cell EF at the back of the wave neighbors B cells, while the rest of the

E cells border only other E cells.

Hence, the six types of cells have four different cell states, which we denote as X (F ),

X (M), X (B) and X (E) = X (EF ) = X (EB ). For binary cells, the possible cell states form the

set S = {(0,0) , (0,1) , (1,0) , (1,1)}.
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Plane wave
Wave state Number of neighbor states

X (F ) X (M) X (B) X (E)
EF 2 0 0 4
F 2 2 0 2
M 2 2 2 0
B 0 2 2 2
EB 0 0 2 4
E 0 0 0 6

Wave with outward bend
Wave state Number of neighbor states

X (F ) X (M) X (B) X (E)
EF 1 0 0 5
F 2 1 0 3
M 3 2 1 0
B 0 3 2 1
EB 0 0 3 3
E 0 0 0 6

Wave with inward bend
Wave state Number of neighbor states

X (F ) X (M) X (B) X (E)
EF 3 0 0 3
F 2 3 0 1
M 1 2 3 0
B 0 1 2 3
EB 0 0 1 5
E 0 0 0 6

Table S5.3: Cell states of nearest neighbors of the six types of cells (EF ,F, M ,B ,EB ,E) for straight waves and
for the cells at the tip of waves with bends (Figure 5.4B). Results are for a hexagonal lattice with coordination
number z = 6.

At any straight segment of a wave, the cells of the wave and those bordering the wave

have exactly the same local structure (nearest neighbors). Concretely, this means that

any cell of the straight segment borders the same number of cells of each state (Table 1).

For instance, an F cell will always border two cells with state X (F ), two cells with state

X (M) and two cells with state X (E).

The set of nearest neighbors of a bent wave differs from that of plane waves only at the

location of the bend. The rest of the cells have nearest neighbors identical to plane wave

cells (Figure 5.4B). We therefore take the propagation condition for the cells at the bend

into account separately (Table S5.3).
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Traveling wave propagation conditions For a traveling wave to propagate, we need

a number of conditions to be satisfied. Since traveling waves have the property that

the entire structure translates forward by one step, we can easily find these conditions.

Basically, all cells of one layer take up the state of the next layer and the background cells

remain constant. For example, an EF cell right in front of the wave should become an

F cell at the next time step. Hence we require that the cell obtains the state X (F ) upon

updating. Let α→ X (α′) denote the condition that a cell of type α acquires state X (α′)
according to the update rule. Then we can succinctly write our set of conditions as:

EF → X (F )

F → X (M)

M → X (B)

B → X (E)

EB → X (E)

E → X (E) (S5.33)

For a straight wave without bends, these conditions need to be checked only once, for

cells that have the nearest neighbors as detailed in the first table in Table S5.3. For waves

with at least one bend, both the condition at the location of the bend (either outward or

inward) as well as the condition for plane waves (for the straight segments of the wave)

need to be checked. For waves with a zig-zag pattern that have no straight segments (e.g.

Figure 5.2D), only the conditions for inward and outward bends need to be checked.

Mathematically, we can represent the propagation conditions through a general set of

equations in terms of the network topology (specified by M (i j )
int ), the sensed concentra-

tion (Y ( j )
α for a cell of type α), and the sensing threshold K (i j )), which for AND-logic

signal integration takes the following form:

X (i )(α) =∏
j

[
θ

(
(Y ( j )
α −K (i j ))M (i j )

)
+1−

∣∣∣M (i j )
∣∣∣] (S5.34)

Here X (i )(α) represents the state of gene i the cell with state α should transition into.

Here we define θ(x) as the Heaviside function with convention θ(0) = 0, i.e. θ(x) =0 x ≤ 0

1 x > 0
. Likewise, for OR-logic we have (see Equation S5.11):

X (i )(α) =∑
j
θ

(
(Y ( j )
α −K (i j ))M (i j )

)
−∏

j
θ

(
(Y ( j )
α −K (i j ))M (i j )

)
. (S5.35)
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Nearest-neighbor approximation Given an exact form of the wave and a specific in-

teraction network of the two genes, we can work out the six conditions for traveling wave

propagation, to obtain exact conditions in terms of system parameters. However, since

the waves can have different features, we look for a more general approach that predicts

propagation independent of the precise shape of the wave. To do this, we will apply

a nearest-neighbor approximation (NNA). The idea is to only consider the immediate

neighbors of a cell when calculating the concentration it senses, and take into account

the rest of the cells through averaging and assuming they are randomly distributed.

Write Y (i )
α for the concentration of molecule i a cell of type α senses. Then we can split

the sensed concentration into terms of the cell itself, its neighbors and an approximation

of the rest of the lattice, which we assume to be independent of the cell type α:

Y (i )
α = Y (i )

sel f (α)+ Y (i )
nei (α)+Y (i )

MF . (S5.36)

Recall that C (i )(X ) is the secretion rate for molecule i . Denote f (i )
nn = f (i )(a0) as the near-

est neighbor interaction strength, and n(X ;α) as the number of cells of state X that

neighbor a cell of typeα. The sensed concentration due to neighbors can then be written

as

Y (i )
nei (α) = ∑

X∈S
f (i )

nn n(X ;α)C (i )(X ). (S5.37)

The contribution of rest of the lattice is estimated through a mean-field approximation.

For a wave with Nw waves, each consisting of bands of width W , with winding numbers

Wx , Wy (Section S5.5.3), we can calculate the proportion of cells that have either of the

genes on. This proportion depends on the cell states of the wave and background cells.

In general, the fraction of cells with a given gene on is

p(i ) = NW W

NC (Wx ,Wy )

(
X (F )(i ) +X (M)(i ) +X (B)(i )

)
+ (1−3

NW W

NC (Wx ,Wy )
)X (E)(i ) (S5.38)

Here X (S)(i ) denotes the state of gene i of a cell state X (S), NC (Wx ,Wy ) is the number of

cells of one layer given winding numbers (Wx ,Wy ) as used in the wave density estimation

(Section S5.5.3). The mean-field contribution is then estimated to be the interaction

strength of all cells excluding the nearest neighbors times the average secretion rate of

the cells:

Y (i )
MF =

(
f (i )

N −6 f (i )
nn

)[
(C (i )

ON p(i ) +C (i )
OF F

(
1−p(i )

)]
. (S5.39)

In practice, we looked at single waves (NW = 1) with layers of a single cell thick (W =
1), and only considered horizontal and vertical waves, for which NC (Wx ,Wy ) = n =p

N
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(Table S5.2). In this case, the expression for p(i ) simplifies to:

p(i ) = 1p
N

(
X (F )(i ) +X (M)(i ) +X (B)(i )

)
+

(
1− 3p

N

)
X (E)(i ). (S5.40)

EXPLICIT EXAMPLE

In this section, we work out an explicit example of the propagation conditions we de-

rived. Consider cellular dialogue 15, which has interaction matrix Mint =
(

1 −1

1 0

)
. From

simulations we observed traveling waves with the composition

• X (F ) = (1,0),

• X (M) = (1,1),

• X (B) = (0,1),

• X (E) = (0,0).

Conditions for propagation Let us denote EF = (0,0)F and EB = (0,0)B . Explicitly, the

conditions for propagation can be expressed in terms of inequalities (Equation S5.41).

Condition Condition on gene 1 Condition on gene 2

(0,0)F → (1,0) Y (2)
(0,0)F

< K (12) ∧ Y (1)
(0,0)F

> K (11) Y (1)
(0,0)F

< K (21)

(1,0) → (1,1) Y (2)
(1,0) < K (12) ∧ Y (1)

(1,0) > K (11) Y (1)
(1,0) > K (21)

(1,1) → (0,1) Y (2)
(1,1) > K (12) ∨ Y (1)

(1,1) < K (11) Y (1)
(1,1) > K (21)

(0,1) → (0,0) Y (2)
(0,1) > K (12) ∨ Y (1)

(0,1) < K (11) Y (1)
(0,1) < K (21)

(0,0)B → (0,0) Y (2)
(0,0)B

> K (12) ∨ Y (1)
(0,0)B

< K (11) Y (1)
(0,0)B

< K (21)

(0,0)R → (0,0) Y (2)
(0,0)R

> K (12) ∨ Y (1)
(0,0)R

< K (11) Y (1)
(0,0)R

< K (21)

(S5.41)

We can show that the last condition for (0,0)R is redundant in general. Namely, we have

Y (i )
(0,0)R

≤ Y (i )
(0,0)F

and Y (i )
(0,0)R

≤ Y (i )
(0,0)B

for both molecules i = 1,2. This implies that if the

condition for gene 2 for (0,0)B is fulfilled, then the condition for (0,0)R is automatically

fulfilled, since Y (i )
(0,0)R

≤ Y (i )
(0,0)B

< K (21). For gene 1, the conditions Y (2)
(0,0)F

< K (12) (condi-

tion on (0,0)F ) and Y (2)
(0,0)R

> K (12) (condition on (0,0)R ) give a contradiction. Since the

first condition has to be true due to the AND function, the second is necessarily false.

This leaves Y (1)
(0,0)R

< K (11). But since Y (1)
(0,0)R

= Y (1)
(0,0)B

, this becomes equivalent to the con-

dition Y (1)
(0,0)B

< K (11) (condition on (0,0)B ). Furthermore, we also have Y (2)
(0,0)B

= Y (2)
(1,0), and

since Y (2)
(1,0)R

< K (12), the condition Y (1)
(0,0)B

> K (12) must be false. Thus, Y (1)
(0,0)B

< K (11) be-
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comes the only condition for gene 1 for (0,0)B . Note that these arguments are specific to

the network and wave form under consideration and do not need to hold in general.

Plane waves We work out the equations explicitly for plane waves. From Equation

S5.36-S5.39 and Table S5.3, we get the sensed concentrations

Y (1)
(0,0)F

= 1+2C (1)
ON f (1)

nn +4 f (1)
nn , Y (2)

(0,0)F
= 1+6 f (2)

nn ,

Y (1)
(1,0) = C (1)

ON +4C (1)
ON f

(1)

nn
+2 f (1)

nn , Y (2)
(1,0) = 1+ 2C (2)

ON f (2)
nn +4 f (2)

nn ,

Y (1)
(1,1) = C (1)

ON + 4C (1)
ON f

(1)

nn
+2 f (1)

nn , Y (2)
(1,1) = C (2)

ON +4C (2)
ON f (2)

nn +2 f (2)
nn ,

Y (1)
(0,1) = 1+ 2C (1)

ON f
(1)

nn
+4 f (1)

nn , Y (2)
(0,1) = C (2)

ON + 4C (2)
ON f (2)

nn +2 f (2)
nn ,

Y (1)
(0,0)B

= 1+6 f (1)
nn , Y (2)

(0,0)B
= 1+2C (2)

ON f
(2)

nn
+4 f (2)

nn ,

(S5.42)

We can then write out the conditions from Equation S5.41 explicitly. For gene 1 this gives:

(0,0)F → (1,0) : 1+6 f (2)
nn +Y (2)

MF < K (12) ∧1+2C (1)
ON f (1)

nn +4 f (1)
nn +Y (1)

MF > K (11)

(1,0) → (1,1) : 1+2C (2)
ON f (2)

nn +4 f (2)
nn +Y (2)

MF < K (12) ∧
C (1)

ON +4C (1)
ON f

(1)

nn
+2 f (1)

nn +Y (1)
MF > K (11)

(1,1) → (0,1) : C (2)
ON +4C (2)

ON f (2)
nn +2 f (2)

nn +Y (2)
MF > K (12) ∨

C (1)
ON + 4C (1)

ON f
(1)

nn
+2 f (1)

nn +Y (1)
MF < K (11)

(0,1) → (0,0) : C (2)
ON +4C (2)

ON f (2)
nn +2 f (2)

nn +Y (2)
MF > K (12) ∨

1+2C (1)
ON f

(1)

nn
+4 f (1)

nn +Y (1)
MF < K (11)

(0,0)B → (0,0) : 1+6 f (1)
nn +Y (1)

MF < K (11)

(S5.43)

For gene 2, the conditions are

(0,0)F → (1,0) : 1+2C (1)
ON f (1)

nn +4 f (1)
nn +Y (1)

MF < K (21)

(1,0) → (1,1) : C (1)
ON +4C (1)

ON f
(1)

nn
+2 f (1)

nn +Y (1)
MF > K (21)

(1,1) → (0,1) : C (1)
ON + 4C (1)

ON f
(1)

nn
+2 f (1)

nn +Y (1)
MF > K (21)

(0,1) → (0,0) : 1+ 2C (1)
ON f

(1)

nn
+4 f (1)

nn +Y (1)
MF < K (21)

(0,0)B → (0,0) : 1+6 f (1)
nn +Y (1)

MF < K (21)

(S5.44)

Since f (1)
nn < 1 (i.e. the interaction of a cell with itself should be larger than that with its

nearest neighbor), we can simplify the equations to account for redundancy. After some
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algebraic manipulations, this reduces the conditions to the following set of inequalities:

1+ 2C (1)
ON f

(1)

nn
+4 f (1)

nn +Y (1)
MF < K (21)

C (1)
ON +4C (1)

ON f
(1)

nn
+2 f (1)

nn +Y (1)
MF > K (21)

1+ 2C (2)
ON f (2)

nn +4 f (2)
nn +Y (2)

MF < K (12)

C (2)
ON +4C (2)

ON f (2)
nn +2 f (2)

nn +Y (2)
MF > K (12)

1+6 f (1)
nn +Y (1)

MF < K (11)

1+2C (1)
ON f (1)

nn +4 f (1)
nn +Y (1)

MF > K (11) (S5.45)

Note that for this particular example, the constraints reduce to a simple set of constraints

for each of the three interactions in the system. Namely, the first two inequalities involve

only parameters that affect the interaction 2 ← 1, e.g. C (1)
ON and K (21), whereas the second

and third pair involve only the interactions 1 ← 2 and 1 ← 1 respectively. This does not

need to be the case in general, since genes which are regulated by both genes will pro-

duce coupled constraints in terms of both interactions. Hence, in this case we can recast

the conditions into a concise set of equations:

K (1,1)
min (C (1)

ON ) ≤ K (1,1) ≤ K (1,1)
max (C (1)

ON ),

K (1,2)
min (C (2)

ON ) ≤ K (1,2) ≤ K (1,2)
max (C (2)

ON ),

K (2,1)
min (C (1)

ON ) ≤ K (2,1) ≤ K (2,1)
max (C (1)

ON ) (S5.46)

where the K (i , j )
min and K (i , j )

max are functions of C ( j )
ON defining the minimal and maximal pos-

sible values of K (i , j ). Explicitly, we have

K (1,1)
min (C (1)

ON ) = 1+6 f (1)
nn +Y (1)

MF ,

K (1,1)
max (C (1)

ON ) = 1+2C (1)
ON f (1)

nn +4 f (1)
nn +Y (1)

MF ,

K (1,2)
min (C (2)

ON ) = 1+ 2C (2)
ON f (2)

nn +4 f (2)
nn +Y (2)

MF ,

K (1,2)
max (C (2)

ON ) =C (2)
ON +4C (2)

ON f (2)
nn +2 f (2)

nn +Y (2)
MF ,

K (2,1)
min (C (1)

ON ) = 1+ 2C (1)
ON f

(1)

nn
+4 f (1)

nn +Y (1)
MF ,

K (2,1)
max (C (1)

ON ) =C (1)
ON +4C (1)

ON f
(1)

nn
+2 f (1)

nn +Y (1)
MF . (S5.47)

Note also that Y (i )
MF is a linear function of C (i )

ON (Equation S5.39), so that these constraints

reduce to linear relations between C (i )
ON and K (i j ) for each interaction i ← j . The values

(C (i )
ON ,K (i j )) together determine the relative strength of this interaction, and we find that

its strength is constrained by two inequalities that determine a reduced but unbounded

region of phase space. The boundaries of these regions together with the predicted TW
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conditions are plotted in Figure S5.9B. This gives an alternative view of the parameter

sets that can support TWs next to the spider charts, which only show that most param-

eters can span several orders of magnitude but do not directly reveal the structure of

the set of TW parameters. In contrast, the analytic result reveals that each of the circuit

parameters (C (i )
ON ,K (i j )) is unbounded from above, but is confined to a region such that

each interaction can be neither too strong (C (i )
ON À K (i j )) nor too weak (C (i )

ON ¿ K (i j )),

except in the case of the self-activation loop where we tend to have C (i )
ON À K (i j ). Simi-

lar results to Figure S5.9B are obtained for the other networks that can support TWs. The

set of inequalities (Equation S5.46-S5.47) also allows us to analytically calculate traveling

wave robustness, as will be discussed in Section S5.5.4.

PERFORMANCE OF THE ANALYTIC FRAMEWORK

To assess the validity of the analytic framework derived in the previous sections, we

directly compared the predictions from the theory to actual simulations of the waves.

We quantified the degree to which these results match and considered the accuracy of

the main approximation in the analytic framework, the nearest-neighbor approximation

(Equations S5.36 and S5.39).

Computational search for traveling waves We verified with our analytic approach that

the above wave forms are indeed the only possible wave forms for two-gene networks.

To this end, we screened a large number of parameter sets for all distinct two-gene net-

works. Specifically, we checked the six conditions Equation S5.33 for wave propagation

for a total of 106 parameter sets for each network. The parameter sets were generated by

Latin hypercube sampling over all non-zero C (i )
ON and K (i j ) parameters. We considered a

network to be capable of generating a wave if for at least one of the 106 parameter sets all

the conditions for traveling wave propagation were fulfilled. The results were consistent

among the three types of waves (plane, with inward bends, with outward bends) that we

examined: in all three cases exactly the same results were found.

Statistical measures for performance The performance of the analytic method we de-

rived is determined by how well it predicts the conditions under which traveling waves

can propagate. We can view our analytic theory as a binary classifier that predicts for

a given gene network and given set of parameters whether TWs can propagate. The

theory takes as input a set of parameters and gives as output a binary prediction about

whether a TW can propagate or not. As such, we quantified its performance using well-

established concepts for evaluating classifiers from machine learning. In particular, we

look at the accuracy, precision and recall of the predictor for all the six cellular dialogues
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and corresponding waveforms we found. These are defined as

accuracy = TP+TN

TP+TN+FP+FN

precision = TP

TP+FP

recall = TP

TP+FN

Here TP = true positives, TN = true negatives, FP = false positives, FN = false negatives.

True positives are parameter sets for which the TW propagates according to both theory

and simulation. True negatives are parameter sets for which according to both theory

and simulation TWs cannot propagate. False positives are predicted to be capable of

sustaining TWs by the theory, but turn out not to do so in an actual simulation. False

negatives are parameter sets that are capable of propagating TWs, but are missed by the

theory.

Assessment of the analytic framework (Figure S5.9) For all of the networks that yielded

waves, we find that the theory correctly predicts plane TWs to an extremely high degree

of accuracy, close to 100% (Figure S5.9A). This means that the theory correctly predicts

whether a wave can or cannot propagate in almost all cases. In contrast, the precision

and recall take slightly lower scores, with a precision is between roughly 0.6-0.8 and a

recall in the range of roughly 0.5-0.7. The interpretation is that roughly 60-80% of con-

ditions predicted to allow TW propagation are indeed ones that can propagate a TW in

an exact simulation, and that 50-70% of the all the conditions for TW propagation are

correctly identified by the classifier. These lower values are caused by the low number of

actual positives (conditions under which a TW can propagate), which is low compared

to the total number of parameters we examined. This means that the few incorrect pre-

dictions that arise from the approximation have a relatively large impact on these per-

formance metrics.

Overall, we thus obtain a good estimator for traveling wave propagation that is accu-

rate except near the boundary of the regions permitting wave propagation. This also

become apparent when we plot the interaction parameters of the predicted and actual

waves together with the theoretical bounds (Figure S5.9B). This shows that the false pre-

dictions (false positives and false negatives) are mainly due to slight misestimations of

the boundaries of the regions allowing for TW propagation. In particular, both the upper

bound and lower bound for K (i j ) are slightly underestimated, meaning that the estima-

tions for the mean-field contribution Y (i )
MF are underestimated. This is evident from the

fact that most false positives are near the lower bound for K (i j ) and most false negatives

are near the upper bound for K (i j ).
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Validity of the nearest neighbor approximation The accuracy of the nearest neigh-

bor approximation depends on how much of the total interaction the nearest neighbors

capture. The more the nearest neighbors contribute to the total interaction strength,

the more accurate the approximation is. This is because all deviations between the the-

ory and the exact model come from the mean-field approximation, which has only a

marginal contribution if the sensed concentration is mostly due to the cell itself and

its nearest neighbors. We can quantify this by comparing f (i )
N N ≡ 6 f (i )

nn (since there are

six nearest neighbors) to the total interaction strength f (i )
N for signaling molecule i . If

f (i )
N N ≈ fN , then the cells beyond the direct neighbors have only marginal influence on

the concentration a cell senses. However, if f (i )
N N ¿ fN , then the nearest neighbor ap-

proximation will be comparatively inaccurate, because we take into account the rest of

the cells in an averaged manner only and neglect their spatial positions.

Note that f (i )
N N / fN depends on the parameters N , a0 and λ(i ). By examining how this

quantity depends on these parameters, we get a picture of when the NNA is most ac-

curate. For weak interaction (high a0), the nearest neighbor approximation matches

closely with the actual system. For stronger interaction, the nearest neighbor approx-

imation becomes worse (Figure S5.9C). In this case, one possible solution would be to

extend the analysis to next-to-nearest neighbors, as we will discuss in the next part. In

contrast, the ratio is hardly dependent on system size N and diffusion length λ(i ) (Figure

S5.9C). Finally, longer diffusion length implies comparatively more influence from cells

further away, leading to less accuracy for the nearest-neighbor approximation. However,

this effect is also weak, accounting for less than 30% variation in interaction strength.

We also considered how taking next-to-nearest neighbors into account improved the ac-

curacy of the analytic approach (Figure S5.9C – dotted lines). The contribution from

next-to-nearest neighbors can be quantified by an interaction parameter f (i )
N N N ≡ 4 f (i )(

p
3a0)+

8 f (i )(2a0), which takes into account the interaction with the twelve cells in the second

layer surrounding a cell on a hexagonal lattice. There are four cells at a distance of
p

3a0

and eight cells at a distance of 2a0 in this layer. We find that total contribution to the in-

teraction strength from the two layers of cells closest to a given cell, ( f (i )
N N + f (i )

N N ) indeed

would improve accuracy, but the effects become less significant as a0 becomes larger.

Thus, extending our framework to include next-to-nearest neighbors would improve the

accuracy of our method, but as a NNA already perform well, it seems unnecessary to

make our framework more complicated.
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OSCILLATORY TRAVELING WAVES

So far, we focused on traveling waves that are characterized by a propagating pattern

on a fixed background. However, we also observed a variety of dynamic spatial patterns

with oscillatory background cells in Networks 16, 20 and 43 (Figure S5.6A). In particu-

lar, oscillatory traveling waves (Section S5.5.1) form a subset that we can analyze using

our framework. Here, we outline how to adapt our framework to the analysis of these

dynamic patterns. From simulations, we observe that the oscillations have period 3 and

always follows a fixed pattern. Using the definition of the Exterior (E), Front (F), Middle

(M) and Back (B) states of a wave (S5.5.3 and Figure 5.4), we can trace out how these

states transition on a state diagram (Section S5.5.2). We found that the cells of oscilla-

tory waves follow a fixed pattern of cell state transitions (Figure S5.6D). Networks 16 and

20 each have one distinct state diagram, and network 43 can generate waves that follow

either of the two state diagrams (Figure S5.6B). Each of the states undergoes a separate

period 3 oscillation, but together they follow an regular pattern on the state diagram.

At the transition with the dotted lines, the wave moves one step further (i.e., the entire

pattern not only oscillates but also moves one cell layer ahead). This occurs for tran-

sitions where both genes are switched, either between (0,0) and (1,1) or between (0,1)

and (1,0). Waves in network 43 can follow either the transitions of network 16 or those

of network 20, or show more complicated patterns which fall outside these two stan-

dard cases. Hence, by imposing each of the transitions on either the same group of cells

(when the wave oscillates but not moves) or a neighboring group of cells (when the wave

translates), we could derive a more complicated set of constraints for the propagation of

such waves if necessary.
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Figure S5.8: Statistics on how long cells take to form traveling waves (TW). (Related to Figure 5.5). (A)
TW formation-time distributions from simulations (shown together in Figure 5.5G) are fitted by exponential
functions, with τ being the expectation value of the fitted exponential distribution. (B-D) Analytic calculation
reveals that TW formation times do not follow an entirely random process, i.e. one where each next system
state is randomly drawn from the set of all states, as one might suspect based on the chaotic appearance of the
dynamics and the exponentially distributed formation times (see Section S5.5.3). (B) Constructions used in
the calculation of the abundance of traveling waves in the system (see Section S5.5.3). (Left) Directions on the
lattice. (Right) Sketch of the construction used to characterize a single wave. By counting all ways of traversing
the lattice, subject to certain constraints, we obtain an estimate of the number of forms of traveling waves of
a given type. (C) Average TW formation time estimated from the wave density calculation (left) at different
grid sizes, compared with the empirical findings from exact simulations (right). Averages are taken over all
self-organized TWs among 300 simulations per grid size, at fixed parameter values. Error bars represent s.e.m.
The highlighted data point is the grid size used in (D). (D) The cumulative distribution of TW formation times
according to the wave density estimation (top) and from simulations (bottom; from simulation set for grid size
16 also used in C). The red dotted line represents the average formation time.
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Figure S5.9 (preceding page): Comparison between simulations and analytic theory for traveling wave
propagation (also see Section S5.5.3. (Related to Figure 5.4) (A) We used concepts from machine learning
to quantify the performance of our analytic theory. Specifically, when viewed as a binary classifier, the an-
alytic theory makes binary (yes or no) predictions about whether a parameter set is capable of propagating
traveling waves. We compare these predictions with actual simulations to determine whether they are correct
or false. The performance of the theory can then be quantified in terms of concepts such as accuracy, preci-
sion and recall (see Section S5.5.3). (B) Two-dimensional projections of the parameter sets that are capable
of propagating traveling waves according to the analytic theory and exact simulations (see Figure 5.4F for al-
ternate representations in terms of radar charts). Since there are six varying parameters for each parameter
set, we projected the parameter sets onto two-dimensional spaces spanned by the two parameters describing

the strength of each interaction – the threshold K (i j ) and the maximum secretion rate C
( j )
ON . We plot the data

points classified as true positives, false positives and false negatives (see Section S5.5.3), but leave out the true
negatives, which are the parameter sets which are correctly predicted to be incapable of sustaining traveling
waves. (C) Contribution of nearest-neighbors ( fnn ) and next-to-nearest neighbors ( fnnn ) to the total interac-
tion strength (see Section S5.5.3), as a function of the lattice spacing, the grid size and the ratio between the
diffusion lengths. We plot the contribution from nearest neighbors and next-to-nearest neighbors as a fraction
of the total interaction strength.
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S5.5.4. ROBUSTNESS AND RELIABILITY OF TRAVELING WAVES

ROBUSTNESS (FIGURE S5.10A–C)

Biological robustness is typically referred to as the ability of a biological system to adapt

to environmental perturbations by maintaining its function [Kitano, 2004]. Control mech-

anisms such as feedback loops may play a role in maintaining robustness. In our system,

different time scales allow us to study the concept of robustness at different levels. The

dynamics of the parameters of the system occurs at an evolutionary time scale (unless

the experimentalist intervenes), while the dynamics of the gene expression happens on

a much shorter time scale (minutes to hours) and the dynamics of the signaling factors

occurs on an even faster time scale. As such, we may consider perturbations at each of

these levels of description to see how they affect the system’s ability to perform a cer-

tain function — which in this case means it’s ability to generate patterns. In this paper,

we considered the system’s response to changes in parameter values. Since we assume

the parameters to stay constant during the entire simulation, we will use robustness as a

static quantity obtained by comparing simulations at different sets of fixed parameters.

Specifically, we considered the robustness of traveling waves for two different situations.

We considered the robustness of TW formation — how changing parameters impacts the

system’s ability to self-organize into a TW, as well as the robustness of TW propagation —

how parameters influence the ability of an already formed TW to continue propagating.

We quantified the robustness in both cases by the fraction of parameter sets, or Q-value,

that can generate or propagate a TW [Von Dassow et al., 2000; Ma et al., 2006]. In the

absence of further information about the parameters, this tells us how likely it is to find

parameters which are compatible with a certain property or behavior of the system —

formation or propagation of TWs in our case.

Normalized Q-value The Q-values we obtain as a fraction of parameter set compatible

with TWs depend on the number of parameters m we sample over for each network.

These values will tend to be higher for networks with fewer parameters than for networks

with higher number of parameters. One method used to correct for this is to take the

m-th root of the Q-value [Von Dassow et al., 2000]. We will call this the “normalized Q-

value”. This value represents the chance for each of the m parameters to be compatible

with TW formation over a specified range of values.

Calculation of Q-values from simulation data In the absence of any predictive theory,

the phase space volume compatible with TWs can only be estimated through drawing

random samples from the parameter space and determining whether TWs can form or

propagate for each of these samples. Note that in principle our parameters are unbound,

i.e. K (i j ) ≥ 1 and C ( j )
ON ≥ 1 with no upper bound. To calculate the robustness, we there-
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fore specified a finite region defined by 1 ≤ K (i j ) ≤ L and 1 ≤C ( j )
ON ≤ L for each signaling

molecule j and each interaction i ← j (neglect the parameters for non-existent interac-

tions). In practice, we took L = 1000 everywhere. We then used Latin hypercube sam-

pling to generate a large number of parameter sets and tested whether TWs could form

or propagate for each of the parameter sets.

For TW formation, we tested how likely it is to find self-organization of TWs in the five

networks for which we found self-organized TWs (Figure 5.3D). We used the same 10,000

sampled parameter sets as were used to generate the initial network classification (Fig-

ures 5.3 and S5.1). For each parameter set, we considered it to be capable of self-organizing

TWs if at least one simulation (out of 10 runs per parameter set) led to a self-organized

TW. The Q-value we obtained for TW formation in this way is of the order of 10−3 (Fig-

ure S5.10B — upper figure). Alternatively, after correcting for the number of parameters,

the normalized Q-value corresponds to a randomly generated parameter having around

30% chance of taking a value compatible with TW formation across a 1,000-fold range

for each parameter (Figure S5.10B — lower figure). The Q-values obtained in this way

are in fact lower estimates as we perform only a finite number of simulations and would

be higher if we could screen over all possible initial states (in which case the Q-values

for TW formation and TW propagation would coincide, since we would also include the

final pattern as initial state). Nevertheless, this approach mirrors the situation in wet lab

experiments, where can only test a finite number of replicates before concluding that a

particular result is highly unlikely to be reached.

For TW propagation, we tested the two types of TWs we found (Figure 5.4D) for each of

the networks in which we found them. We used the same data as obtained from Latin

hypercube sampling which we used to quantify the performance of our analytic predic-

tor (Figure S5.9), as this contains precise information on whether each parameter set

should be able to propagate TWs according to both the theoretical prediction as well as

explicit simulations. This gave higher Q-values, in the order of 10−2 for TW propagation

(Fig. S5.10A — left figure), corresponding to normalized Q-values of about 40−50% for

each parameter to be compatible (Figure S5.10A — right figure). In comparison, the ro-

bustness of the Drosophila segment polarity gene network was quantified for a network

with a far larger set of parameters, for which the authors found Q-values corresponding

to normalized values of about 80−90% for each parameter [Von Dassow, 2000].
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Figure S5.10: Robustness of traveling waves (TWs), measured by the fraction of parameter sets capable of
propagating traveling waves (also see Section S5.5.4). (Related to Figures 5.4 and 5.5) (A) We defined robust-
ness as the fraction of parameter sets that were capable of propagating a TW (“Q-value” – see Section S5.5.4).
Here we show the robustness of TW propagation for each cellular dialogue that is capable of generating TWs.
Networks 33(a) and 33(b) refer to the two types of TWs that cellular dialogue 33 can generate (see Figure 5.4D).
The normalized Q-value considers the number of parameters for each parameter set and can be interpreted
as the probability that a single random draw of each parameter value yields a TW (see Section S5.5.4). Re-
sults are based on testing 106 randomly generated parameter sets obtained from Latin hypercube sampling for
both theory and simulations (see Section S5.4.2). (B) Robustness of TW self-organization from random initial
states. Results are based on testing 104 parameter sets, with 10 simulations for each parameter set. (C) Radar
charts or spider charts for the parameter sets for which TWs propagate as found in simulations (compare with
theoretical results in Figure 5.4F).

ROBUSTNESS: ANALYTIC CALCULATION (FIGURE S5.11)

We can also obtain an estimate for the robustness of TWs through the analytically de-

rived conditions (Section S5.5.3), which we will apply to the explicitly derived conditions
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for network 15 (Equation S5.46). The derived inequalities define a region U ⊂ PL that

is compatible with TW propagation. The volume of this region, V (U ), in relation to the

total phase space volume V (PL) defines the robustness, i.e. we can express the Q-value

as

Q = V (U )

V (PL)
. (S5.48)

The volume over the region compatible with traveling waves can be expressed as an in-

tegral over PL :

V (U ) =
∫ L

1
dC (1)

ON

∫ L

1
dC (2)

ON

∫ L

1
dK (1,1)

∫ L

1
dK (1,2)

∫ L

1
dK (2,1)1T W , (S5.49)

where the function 1T W takes values 1 on the domain for which the inequalities are

satisfied and 0 elsewhere. We have shown that the derived conditions can be reduced

to sets of independent conditions on K (i j ) and C ( j )
ON for each interaction i ← j . This

means that the integral decomposes into two separate integrals

V (U ) =V (1)V (2)

V (1) =
∫ L

1
dC (1)

ON

∫ L

1
dK (1,1)

∫ L

1
dK (2,1)1T W

V (2) =
∫ L

1
dC (2)

ON

∫ L

1
dK (1,2)1T W (S5.50)

To evaluate V (1) and V (2), one must take into account the various ways in which the bor-

ders defined by the inequalities intersect with the boundaries of the box. The integrals

over C ( j )
ON can then be split into integral over the various regions defined by these inter-

sections. Concretely, let us define C (i j )
mi n and C (i j )

max as values of C ( j )
ON at which K (i j )

mi n = L

and K (i j )
max = L respectively. Note that C (i j )

mi n >C (i j )
max by definition. For V (2), we have three

different cases to distinguish: If L <C (12)
max <C (12)

mi n , we have a single integral

V (2) =
∫ L

1
dC (2)

ON

(
K (12)

max −K (12)
mi n

)
If C (12)

max < L <C (12)
mi n , we have to split up the integral into two parts:

V (2) =
∫ C (12)

mi n

1
dC (2)

ON

(
K (12)

max −K (12)
mi n

)
+

∫ L

C (12)
mi n

dC (1)
ON (L−Kmi n)
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Finally, if C (12)
max < C (12)

mi n < L, we have to split up the integral into three parts, where the

integrand over the third part is zero:

V (2) =
∫ C (12)

mi n

1
dC (2)

ON

(
K (12)

max −K (12)
mi n

)
+

∫ C (12)
max

C (12)
mi n

dC (1)
ON

(
L−K (12)

mi n

)
+

∫ L

C (12)
max

dC (1)
ON 0

In the case of V (1), the procedure is a bit more involved, but can be summarized as fol-

lows: we first order the values C (11)
mi n ,C (11)

max ,C (21)
mi n ,C (21)

max , so that we can split the integra-

tion domain of C ( j )
ON up into m ≤ 4 parts [b0 = 1,b1], [b1,b2], . . . , [bm−1,bm = L] by taking

all of the ordered values which are less than or equal to L. For each integration segment

[bs−1,bs ], we then distinguish between the same three cases as in the previous calcula-

tion, but now with an integrand that is the product of two factors, which we will denote

F (11)
s and F (21)

s for now (for K (11) and K (12) and segment number s). The cases to distin-

guish are then similar:

1. If bi <C (i 1)
max <C (i 1)

mi n , then F (i 1)
s =

(
K (1 j )

max −K (1 j )
mi n

)
.

2. If C (i 1)
max < bi <C (i 1)

mi n , then F (i 1)
s =

(
L−K (1 j )

mi n

)
.

3. If C (i 1)
max <C (i 1)

mi n < bi , then F (i 1)
s = 0.

The integral is then calculated as

V (2) =
m∑

i=0

∫ bi+1

bi

dC (1)
ON F (11)

s F (21)
s . (S5.51)

Maximal robustness Equipped with an explicit expression for the robustness of TWs,

we can now study how the robustness changes with parameters, and in particular how

to maximize the robustness by tuning parameters of the system. We quantified the ro-

bustness through a Q-value calculated over parameters describing the parameters of the

gene circuit (K (i j ) and C ( j )
ON ), but this value will depend on other parameters of the sys-

tem. In particular, the expressions of the boundaries C (i j )
mi n and C (i j )

max already reveal that

the Q-value directly depends on f (i )
nn and f (i )

N (Equations S5.47 and S5.39). These quan-

tities in turn depend on N , a0 and λ(i ) (i = 1,2). Hence, we will study how the Q-value

changes with these four parameters, and in particular whether there are global maxima

for the Q-value as a function of these parameters. Note that we can reduce the number

of parameters to three by normalizing the diffusion lengths, λ(i ) (see STAR Methods).
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We first numerically sampled over N , a0 and found a consistent dependence of the ro-

bustness on a0 for different values of the system size (Figure S5.11A-B). The Q-value

first rapidly increases with a0, reaches a maximum and then decays towards zero (Fig-

ure S5.11B). Intuitively, this trend can be understood as a balance between only self-

signaling (at large a0) and excessive communication (at small a0). Namely, at large a0,

the cells only sense their own signaling molecules. But we have seen that traveling waves

are emergent phenomena that rely on cell signaling to realize different dynamics for cells

with the same states, based on their location in relation to the wave. Thus, as a0 →∞,

necessarily the robustness of the waves goes to zero. Mathematically, this is evident from

the fact that fnn → 0 as a0 →∞, so that locally different neighborhoods now exhibit the

same dynamics. Conversely, when a0 approaches zero, the Q-value also goes to zero (for

large system sizes at least). This is likely because the interaction between the cells be-

comes too strong, impeding transitions required to turn off genes, which can only occur

if the sensed concentrations are low enough.

For very small system sizes (grid size/ 10), the trend differs at low values of a0, where in-

teractions beyond nearest-neighbors become important (Figure S5.11D). But since trav-

eling waves are only of interest in large enough systems, we will not consider their be-

havior in very small systems. Conversely, in the N →∞ limit, fN approaches a constant

value and therefore the Q-values also converge to a constant, as is already evident from

the trend at the largest grid sizes shown in Figure S5.11D.

We then examined the effect of varying the diffusion lengths. We will work with the nor-

malized lengths l (1), l (2), so that our results are independent of a0. Since we have previ-

ously seen that the results have only weak dependence on N , effectively we can consider

the robustness as a function of these two parameters only. A numerical screening across

these two parameters reveals the presence of a single global maximum for the Q-value

(Figure S5.11A), at a value of l (1) ≈ 2.2, l (2) ≈ 0.7. This suggests that the robustness of

traveling waves can be optimized by appropriately choosing the signaling molecules (in

particular their diffusion lengths) the cells use to communicate with. In the following, we

will try to explain the presence of this single maximum through a more detailed analysis.

Area fractions Whereas the Q-value is a measure for overall robustness, we can focus

on individual interactions and look at how likely it is to find parameters compatible with

TWs for each interaction. We first project the parameter set onto a 2D-plane described

by K (i j ),C ( j )
ON (for an interaction i ← j ), as these two parameters together specify the

relative strength of the interaction. We then determine area spanned by K (i j )
mi n and K (i j )

max

in this plane and calculate the fraction of this area with respect to the total phase space
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area considered (L−1)2 (recall that we assumed that K (i j ) and C ( j )
ON span a similar range

of values as they have the same units). Formally, we can therefore write

a(i j )(L) = 1

(L−1)2

∫ L

1
dK (i j )

∫ L

1
dC ( j )

ON1T W . (S5.52)

These area fractions represent the probability of randomly picking the right parameters

for each interaction. We then calculated how these area fractions depend on the sig-

naling lengths l (1), l (2). By plotting how these individual area fractions depend on these

variables, we obtain a better understanding of how the maximum Q-value arises (Fig-

ure S5.11E). First, we note that since each area fraction depends only on one signaling

length, we can study how they vary with this single parameter (Figure S5.11F). We see

that the area fraction for i = 1, j = 1 increases with l (1), whereas the area fractions for

i = 1, j = 2 and i = 2, j = 1 first slightly increase and then decrease with l (2) and l (1) re-

spectively. Although the Q-value does not directly decompose into a product of area

fractions, we still expect it to be high if and only if all area fractions are relatively high.

Thus, to obtain optimal robustness, for the second signaling molecule we simply have to

tune its signaling length l (2) to the maximum of the area fraction a(12). For the first sig-

naling molecule, there is a competition between maximizing the area fractions of a(11)

and a(21), which generally have opposing trends. Hence, optimal robustness is likely to

be found at an intermediate value of l (1) that is neither to low or too high.

The trend in the area fractions can be further interpreted by explicitly examining the

projected areas and analyzing limiting cases explicitly. We first note that in the limits

l (1) → 0 and l (1) →∞, the interaction strength becomes

lim
l (i )→0

f (i )(ρ) → 0,

lim
l (i )→∞

f (i )(ρ) → rcel l

ρ
, (S5.53)

where ρ = r /a0 as we recall. Indeed, l (1) → 0 means that the signaling molecules hardly

diffuse anymore, so the interaction between cells becomes negligible. Conversely, if

l (1) →∞, it means that the signaling molecule is basically never broken down as it dif-

fuses away from its source. In this case, f (i )(ρ) reaches a constant that is still distance-

dependent, since the same concentration is spread across a larger and larger area (or

volume in 3D) as the molecules diffuse away from the source. The 1/ρ dependence im-

plies that the concentration on annulus of inner radius ρ and width dρ, f (i )(ρ)ρdρ, is

independent of distance.

With this knowledge, we are now in a position to understand the dependence of the area
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fractions on the signaling lengths of the two molecules. Let us do this by considering

each of the interactions separately.

First, consider the interaction 1 ← 1. The bound K (11)
mi n represents the lowest K (11) value

at which the background cells remain off, so the transition (0,0)E → (0,0)E can occur.

The bound K (11)
max represents the highest value at which gene 1 can turn ON or remain

ON, which is required for the transitions (0,0)F → (1,0) and (1,0) → (1,1).

1. In the limit l (1) → 0, we have K (11)
mi n → 1 and K (11)

max → 1, and therefore the area frac-

tion a(11) goes to a(11) ≈ 0 (left plot of Figure S5.11F). The system cannot simulta-

neously keep gene 1 off in the background state (0,0) and turn on gene 1 in the EF

cells in front of the wave.

2. In the limit l (1) → ∞, we have K (11)
mi n → 7+Y (1)

MF and K (11)
max → 5+ 2C (1)

ON Y (1)
MF , and

therefore the area fraction a(11) reaches a constant value (left plot of Figure S5.11F).

Since both boundaries have relatively large slope in C (1)
ON , the area is moderately

small.

Then, consider the interaction 1 ← 2. Since this is a repressive interaction, the role of the

bounds have reversed. K (12)
mi n represents the lowest value of K (12) for which gene 1 can be

ON (unrepressed), whereas K (12)
max represents the highest value at which gene 1 can still

be repressed.

1. In the limit l (2) → 0, we have K (12)
mi n → 1 and K (12)

max → C (2)
ON , and therefore the area

fraction goes to a(11) ≈ 1/2 (middle plot of Figure S5.11F). To turn or keep on gene

1, K (12) cannot be too low. But this is required only when gene 2 is off (for the

transitions (0,0)F → (1,0) and (1,0) → (1,1)), in this limit the sensed concentra-

tion of gene 2 is very low for these states. Conversely, to turn off gene 1 through

repression by gene 2, K (12) cannot be too high. However, since turning off is only

required in states where gene 2 is ON (namely, for the transitions (1,1) → (0,1) and

(0,1) → (0,0)), and the cell senses a concentration C (2)
ON by default in these states,

the threshold K (12) ≥C (2)
ON . Together, this leaves a relatively large area permitted.

2. In the limit l (2) → ∞, we have K (12)
mi n → 5+ 2C (2)

ON +Y (2)
MF and K (12)

max → 2+ 5C (2)
ON +

Y (2)
MF , and therefore the area fraction a(12) reaches a constant value (middle plot of

Figure S5.11F). Since both boundaries have relatively large slope in C (2)
ON , the area

is moderately small.

Altogether, this implies that the interaction 1 ← 2 should favor a relatively small diffusion

length l (2), as is observed. The analysis does not explain the existence of a maximum be-

tween these extremes.

Finally, for the interaction 2 ← 1, the equations are identical to those for 1 ← 2 and there-
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fore the analysis is similar, with the difference that this is an activating interaction and

therefore the interpretations of turning ON and OFF should be reversed.

In summary, although this technical analysis is rather involved, in essence the existence

of a single maximum in robustness can be understood through a competition between

self-interaction and neighbor interaction. Transitions which occur mostly due to self-

interaction favor weak interaction with neighbors (low l (1) and l (2)). Conversely, transi-

tions that rely on neighbor interactions (e.g. neighbor-induced gene activation for the

interaction) favor strong interaction or high signaling lengths. The competition between

these two effects is responsible for creating a single optimal robustness in terms of the

signaling lengths.

RELIABILITY (FIGURES 5.5F AND S5.12)

While robustness deals with the probability of finding parameter sets compatible with

TWs, we can also ask what the chance of finding a TW is once the parameter set has

been fixed. We define the reliability of TW formation as the percentage of simulations

with varying initial conditions that generate TWs given a set fixed parameters. For each

of the sets of parameters that yielded self-organized TWs, we determined the reliability

by running a large set of simulations and counting in how many of those TWs sponta-

neously formed. Overall, we found an average reliability of 0.2-0.4 across all networks,

indicating that we expect TWs to form in roughly 20-40% of the time for these parame-

ters sets (Figure 5.5F). However, upon closer inspection we find that this average results

from a considerable variability between different parameter sets, indicating that the pre-

cise choice of parameters has a large influence on the reliability of TW formation (Figure

S5.12A). While for many parameter sets the reliability is exceedingly low (5-10%), there

is a continuum of reliability values all the way up to about 80% (Figure S5.12A).

This finding raises the question of whether we could identify any source of this variability

in reliability values between different parameter sets. To address this question, we took

a large set of parameter sets (n = 2534) capable of sustaining a TW once it has formed,

as tested explicitly in simulations starting with a TW. For each of these parameter set, we

then ran a large number of simulations (100) to see whether it could also self-organize

into traveling waves if we set up the initial configuration to be random. Surprisingly, we

found that a large set of these parameter sets did not yield self-organized waves at all

(Figure S5.12B). This indicates the system may be able to propagate a pattern, but have

only few ways of generating such a pattern in the first place. Between the parameter sets

that were found to self-organized TWs, the reliability varies dramatically along a con-
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tinuum between 0 — virtually no simulations become TWs — to close to 1 — almost all

simulations become TWs. When we plot the distribution of the 578 parameter sets found

to generate TWs, we find that the probability to find a given reliability decays nearly

monotonically (Figure S5.12C), indicating that parameter sets with higher reliability in-

creasingly rare. However, when we examined the reliability of these different parameter

sets as a function of the parameters, we observed no clear trend or correlation in two

different projections of the parameter sets (Figure S5.12D-E). The parameters sets with

extremely high reliability values are scattered around the entire region in which TWs are

possible (Figure S5.12D). Furthermore, for any of the parameters, there are parameter

sets with high reliability for both very high and very low values of that parameters, and

the same applies to low reliability (Figure S5.12E).
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Figure S5.11: Analytic framework predicts robustness of wave formations (also see Section S5.5.4). (Related
to Figure 5.5). We used our analytic framework to compute how the robustness –defined as the Q-value (i.e.,
fraction of parameter sets that enable wave propagation) – varies with the number of cells in a population (light
blue plots), nearest-neighbor distance a0 (i.e., lattice spacing), and diffusion lengths l (1), l (2) (see S5.4.1) (pink
plots). (A-D) Q-value as a function of these parameters. (B) and (D) are one-dimensional sections of the plot in
(A), obtained by fixing one of the two parameters while varying the other. (E-F) Area fractions are fractions of

the two-dimensional parameter space spanned by K (i j ),C
( j )
ON for a single interaction i ← j that allow for wave

propagation (also see Section S5.5.4). We show here how the area fractions vary with the diffusion lengths
l (1), l (2). Red dotted lines in (E) show how we fixed one of these two parameters to obtained the plots in (F).
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Figure S5.12 (preceding page): Reliability of traveling wave (TW) formation (also see Section S5.5.4) (Re-
lated to Figure 5.5). We defined “reliability of TW formation” as the fraction of simulations that start with
disordered spatial-configurations which then form TWs (see Section S5.5.4). (A) Reliability values for all pa-
rameter sets that led to TWs, for each of the five cellular dialogues that can generate dynamic spatial-patterns.
The parameter sets are ordered from those that generated the highest number of TWs to those that generated
the lowest number of TWs (blue bars). We classified the other simulations as “other periodic patterns” (red),
“static patterns” (yellow) and simulations that did not reach either a periodic or a static steady-state (purple).
We performed 500 simulations with random initial spatial-configurations for each parameter set. (Caption
continued on next page.) (B-E) Reliability of TW formation for a large set of parameters (n = 2534) capable of
propagating TWs (i.e., for which a TW initial state continued to propagate indefinitely). For each parameter
set, we performed 100 simulations to test whether random initial conditions led to self-organization of TWs.
(B) Fraction of parameter sets that yielded at least one self-organized TW. (C) Distribution of reliability values
among the set of parameters with positive values for reliability. (D-E) Reliability shows no clear dependence
on any of the five parameters that we varied. (D) Projection of the five-dimensional parameter sets on the two-
dimensional parameter space, spanned by the two parameters that specify the strength of each interaction (see
Figure S5.9B for details). Each dot represents one parameter set and the color represents the reliability (color
bar shared with Figure S5.9B). (E) Spider chart projection. Each connected thread represents one parameter
set, with the color of the thread representing the reliability for that parameter set.
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PERSISTENCE OF TRAVELING WAVES WITH NOISE (FIGURE S5.13)

Recall that we observe that traveling waves persist with complex elements up to a cer-

tain degree (Figure 5.6), but that decreasing Hill coefficient or increasing noise, lattice

disorder or cell motility beyond certain thresholds will cause the waves to stop propa-

gating. We obtained these results from running simulations with different values for the

new parameters the extended model introduces (i.e. noise, Hill coefficient, etc.). While

this is a feasible way to obtain information about persistence of TWs, ideally we would

like to be able to estimate these effects without running any simulations. To this end, we

derived an analytic method to compute the effect of noise on traveling wave persistence

(Figure S5.13).

We study the propagation conditions derived in Section S5.5.3 under the influence of

noise in the form of fluctuating thresholds K (i j ) → K (i j )+δK (i j ) withδK (i j ) ∼N (0,σK (i j )),

as defined previously. Under our wave decomposition scheme, we have six different

transitions that need to be satisfied by a given number of cells. Consider the transi-

tion α→ β = X (α) for a transition of a wave state α ∈ {EF ,F, M ,B ,EB ,E } to a cell state

β= (β(1),β(2)),β(i ) ∈ {0,1}. The condition under which this transition occurs can be writ-

ten as

β(i ) =∏
j

g (i j )(X (α)), (S5.54)

g (i j )
α =


θ(Y ( j )

α −K (i j )) M (i j ) = 1

θ(K (i j ) −Y ( j )
α ) M (i j ) =−1

1 M (i j ) = 0

. (S5.55)

Here g (i j )
α = g (i j )(X (α)) and Yα = (Y (1)

α ,Y (2)
α ) is the sensed concentration of the cell with

wave stateα, which we calculate in the nearest-neighbor approximation (Section S5.5.3).

The persistence of the TW requires that the transition conditions are met for each of the

N cells of the system. We next derive the probability that this occurs for a given value of

the noise strength σ.

First, we derive the probability that g (i j )(X (α)) = 1 for any interaction and σ. The proba-

bility that this holds depends on the the interaction type specified by M (i j ). For M (i j ) = 0,

this condition is trivially met, so we consider M (i j ) 6= 0. We then have the general expres-
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sion

P (g (i j )
α = 1) = P

(
Y ( j )
α −K (i j ) −δK (i j ))M (i j ) > 0

)
=

P
(
δK (i j ) < Y ( j )

α −K (i j )
)

M (i j ) = 1

P
(
δK (i j ) > Y ( j )

α −K (i j )
)

M (i j ) =−1

=
D(Y ( j )

α −K (i j );0,σK (i j )) M (i j ) = 1

1−D(Y ( j )
α −K (i j );0,σK (i j )) M (i j ) =−1

=
(

1+M (i j )

2

)
D(Y ( j )

α −K (i j ))+
(

1−M (i j )

2

)(
1−D(Y ( j )

α −K (i j ))
)

. (S5.56)

Here D(Y ( j )
α −K (i j );0,σK (i j )) is the cumulative distribution function of the normal dis-

tribution with mean 0 and standard deviationσK (i j ) evaluated at Y ( j )
α −K (i j ). Because of

the AND-logic we impose, and because the noise terms are independent for each (i , j ),

the probabilities for the final state can be written as

Pα(β(i )) ≡ P (β(i )|α) =
1−P (g (i 1)

α = 1)P (g (i 2)
α = 1)) β(i ) = 0

P (g (i 1)
α = 1)P (g (i 2)

α = 1)) β(i ) = 1
(S5.57)

=β(i )
∏

j
P (g (i j )

α )+ (1−β(i ))(1−∏
j

P (g (i j )
α )). (S5.58)

By inserting Equation S5.56 into Equation S5.58 we obtain transition probabilities at the

single-cell level in terms of the sensed concentrations Yα, thresholds K (i j ) and noise

levels σ (for a given transition α → β). In order for the entire wave to propagate, the

transitions must be satisfied for each gene i and each of the cells in the system. Let nα
be the number of cells of type α in our system. For a single, straight plane wave, we have

nα = p
N for α = EF ,F, M ,B ,EB and nα = N − 5

p
N for α = E . We can then write the

probability that the wave survives for one time step as

Psur vi val =
∏
α

P (α→β)nα =∏
α

(
L∏

i=1
Pα(β(i ))

)nα

. (S5.59)

The probability that the wave survives for t time steps is then (Psur vi val )t .

Accuracy of computed survival probability The accuracy of the computed survival

probability mostly depends on the validity of the nearest-neighbor approximation. Re-

call that we estimate the signal molecule concentration from all cells beyond nearest

neighbors through a mean-field approximation term YMF (Equation S5.39). This ap-
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proximation is the reason why the computed TW propagation conditions are not exact,

and as a result the survival probabilities are also not exact. However, this only leads to

significant discrepancies when either (1) the interaction strength is very high, i.e. when

cells interact strongly with each other (a0 small), or (2) when the original parameter set

is close to the boundary of the region where TWs can propagate. In the second case, the

problem arises when the calculated boundary of the ‘TW propagation phase’ is not accu-

rate. In this case, the noise strength required to perturb the system beyond the boundary

cannot be accurately estimated, which in turn leads to the survival probability being in-

accurately computed. When the system is far away from the boundary, these deviations

are proportionally smaller and as a result the order of magnitude estimation of the re-

quired noise strength to perturb the wave is more accurate.

Application to other complex elements Similar arguments can in principle be derived

to study the effect of disordered cell positions and cell motility, while for finite Hill co-

efficient at this point we lack an analytic framework for wave propagation. In essence,

when only the positions of the cells are altered, this reflects only in the interaction terms

f (i )(ri j ) which are functions of the distance between cells ri j . At first approximation, for

small deviations only the nearest neighbor terms f (i )
nn = f (i )(a0) are affected. Hence one

can estimate the effect of spatial rearrangement of the cells through the effect on the

nearest-neighbor interaction strengths f (i )
nn , which now typically become different for

individual cells if the rearrangement process is stochastic. These in turn can be directly

computed from distributions of nearest-neighbor distances obtained from the stochas-

tic rearrangement process.

However, in practice, even for simple Brownian motion of the cells the expressions for

distributions of nearest-neighbor distances yield unwieldy mathematical expressions in

terms of special functions such as Bessel functions. Furthermore, while the effects are

straightforward to estimate for a pair of moving cells, it is not trivial whether the pair-

wise calculation can be extended to a full lattice. As such, we have not attempted to fully

derive analytic results regarding the effect of moving cell positions on traveling wave

propagation, but merely want to point out that such a calculation is in principle possi-

ble.
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Figure S5.13: Persistence of traveling waves in the extended model with stochasticity: theory and sim-
ulations (see Section S5.5.4) (Related to Figure 5.6) The subfigures have the following fixed parameters:
N = 225, a0 = 1.5, rcel l = 0.2, CON = (500 500), and (A)

( 50 300
300 0

)
, (B)

( 50 300
300 0

)
, (C)

( 40 500
300 50

)
, (D)

( 50 500
300 70

)
,

(E)
(900 300

400 50

)
, (F)

(900 400
300 50

)
. (A-F) We used the analytic framework for studying wave propagation (Figure 5.4)

to understand how adding noise affects wave propagation. We introduced noise by stochastically varying the
threshold concentrations (i.e., K (i j )) and defined “noise strength” that quantifies the typical fluctuations in
K (i j ) (see Section S5.4.3). The plots here show “survival probability” – the probability that a rectilinear wave,
after forming, persists (keeps on traveling) for at least one full period – as a function of the noise strength for
all six cellular dialogues that we identified as capable of forming dynamic spatial patterns (Figure 5.4D). Solid
curves in the plots are from our analytic framework, which had no fitting parameters. The data points are from
simulations, with 100 iterations of simulations performed for each data point. These results are for fixed sets
of parameter values which we chose to lie well within the region of the parameter space where one obtains
persistent waves (see, for example, Figure S5.9B for these regions).
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6
DISCUSSION

In this thesis, we have examined the collective dynamics of populations of communicat-

ing cells by building mathematical models, developing theoretical concepts and metrics

and analyzing their behavior through numerical simulations and analytic calculations.

In the following, we state two general conclusions, which relate to the various results

presented throughout the thesis. We then critically examine the biological realism of our

models and discuss different experimental strategies for validating our results. Finally,

we offer a list of suggestions for further research.

6.1. KEY LESSONS LEARNED

CONCLUSION 1: MOLECULAR-SCALE PROPERTIES DICTATE EMERGENT POPULATION-

LEVEL BEHAVIOR

Throughout this thesis, we have aimed to relate microscopic parameters to emergent

population-scale dynamics, for a generic class of multicellular systems consisting of

secrete-and-sense cells. This effort mirrors the approach taken to construct genotype-

phenotype maps in evolutionary biology. We find that microscopic features of cell-cell

interactions control macroscopic dynamics by constraining the range of possible population-

level dynamics. This is evident in both the role of the underlying gene regulatory network

as well as that of the molecular parameters specifying processes, such as diffusion of the

signaling molecules, secretion and response of the cells. For instance, we have character-

ized the conditions required to propagate traveling waves and found that they are only

228
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satisfied by a subset of two-gene networks and their corresponding regions in parameter

space. Thus, by tuning these molecular-scale properties, we can to a great extent control

the collective behavior of a population of interacting cells.

Experimentally, this idea was demonstrated in engineered yeast strains that communi-

cate by secreting and sensing the same signaling molecule [Youk & Lim, 2014a]. Here,

the authors showed that the social behavior of quorum sensing cells can be tuned by

modulating the sensing and secretion pathways through chemical inducers. While the

experimental study was done in bulk, in our models we can simulate a spatially dis-

tributed collection of cells. Earlier work already showed that the collective behavior of

such a system can be characterized by different “phases”, whose boundaries are deter-

mined by parameters underlying the response of the cells and the effective cell-to-cell

distance [Maire & Youk, 2015a]. We have expanded upon this idea by calculating an

effective “pseudo-energy” landscape, whose shape is dictated by these molecular pa-

rameters, and which constrains the dynamics of our system (Chapter 4). In this way, we

obtained a visual representation linking the molecular parameters to the overall “phase”

of the system.

With multiple signaling molecules, the primary determinant for the types of patterns

that the system can generate is the underlying gene network topology (Chapter 5). We

considered simple topologies, where the different molecules interact at the genetic level

by regulating each other’s production levels, and showed that distinct architectures can

generate distinct patterns. For instance, we have shown that there are classes of gene

regulatory networks that are incapable of forming any dynamic pattern, regardless of

the tuned molecular parameters (Chapter 5 – Figure 5.3). Furthermore, once the appro-

priate network topology is chosen, the parameters still need to be tuned accordingly to

generate the required patterns. For instance, to generate dynamic spatial patterns such

as traveling waves, we found that the strength of the positive self-interaction(s) need

to be strong (Chapter 5 – Figures 5.4F and S5.9). Our analytic framework shows that it is

possible to deduce general constraints on molecular parameters that determine whether

such patterns can form and propagate (Chapter 5 – Section S5.5.3 and Figure 5.4). Fur-

thermore, we have also derived general constraints on the system dynamics that arise

from molecular parameters, which can be stated in terms of state diagrams (Chapter 5

– Section S5.5.2 and Figure S5.7). Together, these results show that it is possible to de-

rive constraints on the macroscopic behavior of our system directly from microscopic

parameters.
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CONCLUSION 2: STATISTICAL PHYSICS CONCEPTS ELUCIDATE SYSTEMS-LEVEL

PROPERTIES OF MULTICELLULAR SYSTEMS

A second recurrent theme throughout this work has been the use of tools from statisti-

cal physics to study the collective behavior of interacting cells. In recent years, statistical

physics has branched out from its original focus on studying molecules to studying firing

neurons, bird flocks and the immune system [Mora & Bialek, 2011]. These studies typ-

ically find an exact correspondence between predictions of a statistical physics model,

such as the Ising model, and biological data. For instance, the spike trains of individual

neurons can be represented as binary sequences representing whether a neuron is spik-

ing or not. By studying correlations between these spiking events in different neurons,

researchers proposed that pairwise interactions — such as captured in the Ising model

— are sufficient for understanding these correlations [Schneidman et al., 2006]. A more

fundamental question arising from these approaches is whether biological systems are

poised at criticality [Mora & Bialek, 2011]. While this may seem like an abstract concern,

if a biological system is indeed close to a critical point, this would enable us to study it

using the arsenal of statistical physics knowledge on critical phenomena.

While our work has drawn inspiration from these approaches, we did not directly ap-

ply statistical physics to biology, due to basic incompatibilities with our model. For in-

stance, our system lacks natural definitions of key quantities such as temperature and

energy. Although we have postulated analogous quantities such as the “pseudo-energy”

(Chapter 4) and “multicellular entropy” [Maire & Youk, 2015a], these are strictly speaking

not thermodynamic quantities. One way to resolve these incompatibilities is by directly

employing Ising models to model pattern formation [Hillenbrand et al., 2016]. This has

the advantage of starting from a well-studied physics model, but requires assuming phe-

nomenological quantities (e.g. coupling terms not directly derived from biophysics). In

contrast, all our model elements arise directly from modeled biophysical and biochem-

ical processes, but this means that it no longer directly corresponds to a physics-type

spin model (more on this later).

In Chapter 3.2, we studied the transition between a (disordered) “autonomous phase”

and an (ordered) “collective phase” in a population of cells with continuous states. While

this phenomenon is simple and perhaps unremarkable, we motivate our study by refer-

ring to a highly popular model in statistical physics that exhibits a similar phenomenon.

Indeed, the Vicsek model — arguably the quintessential active matter model — is also an

agent-based model that shows a density-dependent transition between an ordered and

a disordered phase [Vicsek et al., 1995]. Although the Vicsek model is a highly simplified

representation of flocking birds, its tremendous popularity can perhaps be attributed to

the success of applying statistical physics to understand the density-dependent transi-
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tion as a second-order phase transition [Ginelli, 2016].

In our approach, we have also sought to characterize the density-dependent transition

between “autonomy” and “collectiveness” as a phase transition. This is evident from

the metrics we developed for characterizing this transition, which all show rather sharp

transitions between the two phases. These metrics should be regarded the equivalent of

“order parameters” to characterize this transition. In addition, we have also used mean-

field theory to explain observations for weakly interacting cells, which is a commonly

used strategy in statistical physics. Although we did not develop a rigorous method to

characterize this transition as a phase transition, our attempts have identified metrics

to characterize statistical properties of this transition which are also applicable to other

systems with similar phenomena.

In Chapter 4, we took the statistical-physics analogy further by exploiting the analogy

between our model and the Ising model. Here, the correspondence is very strong, but

we should give a note of caution to avoid readers from confusing our model as simply an

instance of the Ising model. As mentioned, our model does not have natural definitions

of thermodynamic quantities such as temperature and energy. Moreover, the dynamics

of our model arises from a cellular automaton with deterministic rules. This cannot di-

rectly correspond to the Ising model or any spin model. At finite temperature there is

necessarily noise in the system (e.g. as modeled by Glauber dynamics), whereas at zero

temperature the ground state cannot have spatial structure, since it is trivial (e.g. ho-

mogeneous for ferromagnetic interactions). This is in contrast to probabilistic cellular

automata, which in certain cases can be directly mapped onto Ising models [Merle et al.,

2019].

As such, our framework is only analogous to statistical physics frameworks, but not iden-

tical to any existing statistical physics model. Nevertheless, let us discuss the analogy in

a bit more detail. Our macrostate description in terms of p and I is analogous to an Ising

macrostate with fixed energy and average magnetization. In fact, the average gene ex-

pression has the same mathematical form as the average magnetization. Furthermore,

the spatial index I is to some extent comparable to a correlation length, except in the

cases where the lattice becomes (almost) homogeneous. Then our spatial index tends

to zero (see Section S4.5.1), whereas the correlation length would diverge. Our “pseudo-

energy landscape” with its stochastic equation of motion mirrors free energy minimiza-

tion for systems in thermodynamic equilibrium. Yet our equilibrium states are not lo-

cated at free energy minima (even local ones), because our energy landscape does not

contain any minima except at the extremes where the system is homogeneous (see Sec-

tion S4.5.6). This comes from the redundancy of our macroscopic description — many
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states may correspond to the same macrostate. As a result, equilibrium states and non-

equilibrium states (as determined by the cellular automaton’s rules) may correspond to

the same macrostate (have the same value of p and I ). Therefore, we introduced another

concept — the equilibrium probability or intuitively the landscape’s “stickiness” (Section

S4.5.5) — to obtain an approximate picture of the locations of equilibrium states on the

energy landscape.

6.2. RELATION TO OTHER MATHEMATICAL MODELS
In this section, we briefly discuss the relation between the multicellular model studied in

this thesis and two broad classes of models that show similar self-organization phenom-

ena: cellular automata and coupled map lattices. We will sketch how our results relate

to some well-established concepts and features of these systems.

CELLULAR AUTOMATA

As a discrete-time, discrete-space and discrete-state model, our model in its original

form (Chapter 3.1) is an instance of a cellular automaton (CA). However, note that a nar-

rower definition of CA would include only models where the interactions are local, i.e.

the update rule depends only on the nearest neighbors of a cell. In contrast, our model

the cells are globally coupled (Eq. 3.7), i.e. each cell has a non-zero interaction with all

cells in the system. However, at large distances the interaction function decays expo-

nentially with distance to a cell (Eq. 3.1). Therefore, if the interaction range λ is small

compared to the inter-cell distance a0, the interactions are approximately local.

Much of what is known about cellular automata stems from studies of the elementary

CA [Wolfram, 1984; Wolfram, 2002]. Our model is not an elementary CA, because of

the mentioned global coupling and because it is 2D. Furthermore, while the elementary

CA form a discrete set of model instances, our system constitutes a family of models

parametrized by continuous variables. As such, each instance of our model with a fixed

set of parameters could in principle correspond to a different elementary CAs under this

approximation.

Recall that the elementary CAs have been classified into four classes:

1. Class 1: nearly all configurations evolve towards a uniform steady state.

2. Class 2: nearly all configurations evolve towards stationary or periodic steady states.

3. Class 3: nearly all configurations lead to aperiodic ("chaotic") patterns.

4. Class 4: nearly all configurations lead to complex patterns that can interact in in-
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teresting ways, rendering the system suitable for universal computation (i.e. a Tur-

ing machine).

Our system can be identified with different classes, depending on how the parameters

are chosen. For one gene, the “phenotype diagrams” [Maire & Youk, 2015a] can be used

to identify Class 1 behavior, which would only occur in the “all ON” and “all OFF” phases.

As a single gene does not induce chaos or complex patterns, in all other phases the sys-

tem falls into Class 2. With multiple genes, the state diagrams (Chapter S5.5.2) directly

identify when the system is in Class 1. In this case the state diagram would contain a

single steady state and no loops. Class 3 and 4 only occur for the network topologies ca-

pable of generating dynamic spatial patterns (Fig. 5.3). Intuitively, a system capable of

forming traveling and other propagating waves would be Class 4, as they have the capac-

ity to interact in complex ways, annihilate and generate new waves. However, it is not

known whether our system is Turing complete.

Wolfram has also developed “statistical mechanics” of CA [Wolfram, 1983]. This frame-

work does not literally correspond to statistical thermodynamics with its Boltzmann dis-

tribution and thermodynamic ensembles, which is also the case for our framework (as

discussed in Conclusion 2, Chapter 6). Rather, it is a set of tools to characterize sta-

tistical properties of the configurations and dynamics of CA. Some of our quantitative

metrics are borrowed from or have a direct counterpart to Wolfram’s framework. For

instance, whereas Wolfram uses two-point correlation functions from physics, we used

Moran’s I as a way of characterizing spatial correlations. Both quantify spatial corre-

lations, but from correlation functions we obtain a length scale (the correlation length).

However, defining a correlation length is challenging when the correlation function does

not decay exponentially, as is the case in our system. The Hamming distance is also bor-

rowed from this work, where Wolfram uses this to show that in the chaotic regime, initial

states differing by a single cell can diverge from each other exponentially. Furthermore,

he proposes that self-organization can be understood as an entropy-reduction process,

whereby the Shannon entropy of the distribution of accessible states goes to zero. This

principle should also hold for our system, but the Shannon entropy is hard to compute

due to the large number of possible states.

COUPLED MAP LATTICES

A similar comparison can be made between our model and coupled map lattices (CMLs).

When the response function has a finite Hill coefficient (Chapter 3.2), the state variable,

i.e. the gene expression level of a cell, becomes continuous, rending our system a CML.

Kaneko has proposed different types of CML behavior, which he dubbed “universal-

ity classes” [Kaneko, 1989; Kaneko, 1992]. Examples include “frozen random patterns”,
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where the system forms a stationary or oscillatory temporal pattern but a random spa-

tial pattern; “pattern selection”, where domains of a certain size become dominant over

time; traveling waves; and "fully developed spatiotemporal chaos".

At a qualitative level, we recognize a few elements of these phases in our model, but there

seems to be no exact correspondence between the logistic CML phases and our model’s

phases. For instance, the “frozen patterns” would correspond to the case where cells

are autonomous. This would essentially “freeze” a random pattern of independent cells

that either remain stationary or oscillate, depending on the underlying gene circuit and

parameters. However, we have not observed any clear examples of “pattern selection”,

where the pattern consists of domains of a limited size. We have also not found a clear

correspondence to any of the other logistic CML phases identified by Kaneko [Kaneko,

1993].

In terms of analysis, we can use a variety of analytical tools to characterize CMLs. Kaneko

proposed that the different regimes he defines have distinct signatures in terms of a

number of metrics [Kaneko, 1989]. In particular, he showed that the spatial and tempo-

ral power spectra (obtain from Fourier transforms) look different in the various phases

of the logistic CML. The same is true in our multicellular model, where the spatial spec-

tra can carry distinct signatures for distinct phases1. This is for instance the case for

(straight) travelling waves, for which the spatial power spectrum shows distinct peaks

for the modes corresponding to the orientation of the wave. As such, we should be able

to quantify the degree of “waveness” using power spectra. This idea was further explored

by defining a “wave score”, but this quantity was found to be not applicable to all waves

[Grundel, 2019].

6.3. BIOLOGICAL REALISM OF OUR MODELS
We have aimed to construct minimal models that incorporate biologically realistic fea-

tures such as cell signaling and response in the simplest possible ways. As such, we nec-

essarily omit features that may be present in some multicellular systems, especially in

the development of complex organisms. We have already motivated modeling choices

such as bistable cells arising from ultrasensitivity (Chapter 3.1) and separation of timescales

between molecule and gene expression dynamics (Chapter 4.3). We have also men-

tioned active transport, clustering and receptor endocytosis as additional contributing

processes (Chapter 4.3). Here we elaborate on a number of such effects that we have not

taken into account and suggest how we may expand our framework to include these ef-

fects. Adding these additional features may or may not change the results obtained from

1Detailed results of these and other efforts to quantitatively characterize patterns are presented in the master
thesis of Douwe Grundel [Grundel, 2019].
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our modeling efforts. Either way, we have already shown that none of these features are

necessary for generating complex patterns. As such, adding these features should only

be a priority in cases where the minimal model is clearly shown to be insufficient.

First of all, there are several other sources of cell-cell interactions that may be signif-

icant in real tissues, such as mechanical interactions and contact-mediated signaling

(reviewed in Chapter 2). Adding contact-mediated signaling is straightforward on a lat-

tice model, but it is less obvious how to model its downstream effects and how it inter-

acts with the secrete-and-sense mechanism. Mechanical interactions play an important

role in a variety of morphogenetic processes and especially the interplay between me-

chanical and chemical signaling can be significant in development [Hannezo & Heisen-

berg, 2019]. However, for interacting unicellular organisms such as social amoebae, me-

chanical effects would be less significant. Including mechanical interactions in the cur-

rent model would likely require major changes to the model. Our assumption of non-

touching spherical cells would need to be heavily modified, and with that also the de-

scription of chemical signaling (which relies on this geometry when solving the under-

lying reaction-diffusion equation). We would then likely need to model the cells’ shapes

and geometry-dependent mechanical interactions explicitly. One possibility to circum-

vent this is by modeling cells as connected springs, which appears sufficiently realistic

to explain experimentally observed dynamic patterns [Aoki et al., 2017].

We have used simple equations for describing regulation at the genetic level, involving

a single response function (either step-like or sigmoidal) and direct genetic interactions

in the case of multiple signaling molecules. Real biological networks are complex and

involve far more components. However, as theorists we must make simplifications to

keep models tractable, and choosing the correct simplification may pose a challenge.

When it comes to the complexity of gene networks, we note that make simplifications

by combining elements of e.g. the signaling response network, and describe only its

effective outcome [Tyson et al., 2003]. This is also the main idea behind modeling ultra-

sensitive response, which may arise from multistep processes, as single step functions

or sigmoidal functions (discussed in Section 3.1). Nevertheless, we should acknowledge

that the choices we made are not unique. There are still many possible response func-

tions depending on the implicit topology of the signaling network, and future work may

expand to include these other possibilities [Tyson et al., 2003].

Furthermore, while our main model elements are based on underlying physics and chem-

istry, the elements of our model expansions are mostly phenomenological (Section S5.4.3).

The reason for this is that the modeled processes — in particular stochasticity and cell

motility — are highly complex, and modeling these is not the main focus of our work.
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As such, we have employed a highly simplified, phenomenological description of noise

and cell motility in the system. In the case of cell motility, we have already mentioned

biologically realistic alternative descriptions (Chapter S5.4.3). As for noise, we should

mention that stochasticity enters not only at the cell sensing and gene regulatory level,

but also in the response times of cells, arising from the underlying chemical kinetics of

often multi-step reaction pathways [Thurley et al., 2018]. Hence, the fact that we update

all cells synchronously in our cellular automaton may not always correspond to realis-

tic situations, but is still a good approximation for when the response time distributions

are narrow. Alternative updating schemes for the cell states, e.g. based on the stochas-

tic simulation algorithm or any of its adaptations [Cao et al., 2005], could alleviate this

concern.

Finally, while in our idealized setting cells are identical and are always actively secret-

ing and sensing, real tissues tend to be more heterogeneous, even when all cells are of

the same type. As such, the actual interactions between cells, as determined by corre-

lations in their dynamic activity, tends to have the structure of complex networks with

a high degree of clustering, rather than that of homogeneous networks [Gosak et al.,

2018]. One example is found in the pancreas, where β-cells communicate through gap

junctions and paracrine signal. Correlations in calcium spiking of these β-cells (a proxy

for insulin release) show that spiking activity is coordinated in a highly nontrivial fash-

ion, with distinct clusters of cells that have highly coordinated activity within the same

cluster, but not between different clusters [Gosak et al., 2018]. This suggests that tissues

could have more complex interaction networks than the homogeneous systems we have

considered. To take this into account, we could alter our model by taking a random graph

approach, where we vary the connectivity between cells by randomly assigning links.

6.4. EXPERIMENTAL VALIDATION
The ultimate test of the biological realism of our models can only be obtained through

direct comparison with experimental data. We have already mentioned optogenetics

(Chapter 4.3) and synthetic gene circuits (Chapter 5.3) as possible methods for directly

testing model predictions. Here we discuss in more depth various strategies for relating

our findings to experiments. As our model has minimal assumptions, we envision ap-

plying its results to various types of systems. Here, we shall distinguish between devel-

opmental biological systems, synthetic biological systems and non-biological systems.

The focus is mainly on dynamic patterns, but much of the discussion will be general and

applicable to any type of pattern formation.
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6.4.1. DEVELOPMENTAL BIOLOGY SYSTEMS

In developmental biology systems, the constituents and interactions — e.g. cell types,

genetic networks, diffusion constants — are in principle fixed. Experimentalists can ad-

just these parameters to a limited extent by changing the environment of the system, e.g.

through the addition of chemical components, or by performing genetic perturbations.

Moreover, a multitude of possible interactions may be at play simultaneously, many of

which may be unknown. Finally, as there are many mechanisms of generating similar

phenomena, testing ideas about proposed mechanisms in natural systems is typically

challenging. Altogether, this makes directly testing theoretical hypotheses in naturally

occurring developmental systems more challenging than in synthetic systems.

Nevertheless, a number of recent studies have tackled the challenge of explaining vari-

ous dynamic patterns in developmental systems through theoretical models [Lubensky

et al., 2011; Cotterell and Sharpe, 2015; Jörg et al., 2019]. The general approach in these

studies is to start with gene networks and cellular interactions as known from experi-

ments, and then to model the spatiotemporal dynamics of relevant genes or processes

as resulting from these interactions. The patterns that are produced are then compared

with experimental results. If mutants with deviating phenotypes are available, these can

consolidate proposed theoretical models if the data matches. This strategy is feasible

also for verifying our models. Since many different mechanisms can lead to the same

pattern, probing the dynamics of pattern formation and examining how a system re-

sponds to perturbations is required to claim validity of a theoretical model.

In terms of gene network architectures, our results are promising when compared with

these and other theoretical and experimental findings. The above studies reproduced

traveling waves with gene networks and cell-cell interactions which are more complex

(i.e. larger and with more links) than the ones considered in our computational search.

Nevertheless, their general topological features qualitatively match with our results. In

all of these works, the underlying interaction network consists of interlocked positive

and negative feedback loops, where the positive feedback is typically direct (e.g. without

explicit intermediate mediators), whereas the negative feedback is mediated through

interaction with a secondary component. This corresponds precisely to the “activation-

inhibition” cellular dialogues capable of generating dynamic spatial patterns, e.g. net-

work 15 and its derivatives (Figure 5.1).

With regard to the FitzHugh-Nagumo (FHN) model, a prototype for describing excitable

phenomena, these results should not be surprising [Gelens et al., 2014]. The main quali-

tative feature shared with the FHN model is the combination of a fast activator and a slow

inhibitor, leading to transient excitation spikes that form traveling waves in a spatially
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distributed system. However, despite the success of FHN model in explaining diverse

biological phenomena [Sgro et al. 2015; Hubaud et al., 2017], it remains a phenomeno-

logical model whose constituents can typically not be mapped directly to biophysical

quantities. Conversely, in the bottom-up modeling approach that we and others took, a

qualitatively similar mechanism arises from biophysically realistic assumptions.

Furthermore, the networks we identified as the ones generating dynamic spatial pat-

terns also correspond precisely to the networks generating Turing patterns in reaction-

diffusion systems [Scholes et al., 2019]. Why does our model not seem to generate Tur-

ing patterns then? The main assumption that distinguishes our model from reaction-

diffusion systems models is that we impose a separation of time-scales between the sig-

naling molecule dynamics and the gene expression dynamics. Delays in gene expression

response time could well be responsible for generating different phenomena. This is ex-

emplified by gene circuits with a single negative feedback. When the response is imme-

diate, this typically leads to dampening of oscillations, such that all dynamics leads to a

single stable fixed point [Alon, 2006] — this situation corresponds to homeostasis. How-

ever, if there is a delay in response time, the same circuit leads to stable, never-ending

oscillations. Likewise, it is possible that traveling waves in our model are a result of the

slow cellular response compared to signaling molecule dynamics. Another possibility

is that static patterns with a well-defined wavelength (i.e. Turing patterns) are possible,

but their wavelengths are larger than the typical simulated system size (i.e. hundreds of

cells). Simulating larger systems and characterizing correlation lengths would be a way

to tell whether this is the case.

6.4.2. SYNTHETIC BIOLOGICAL SYSTEMS

Synthetic biology provides another promising avenue for studying multicellular pattern

formation. Engineering patterns in controlled setups can provide new insights about

patterning mechanisms and allow for direct comparison with computational models.

As Richard Feynman noted, “What I cannot create, I do not understand”. Typically,

one starts from well-known mechanisms of pattern formation and aims to reconstitute

patterns in populations of cells with engineered genetic circuits, possibly under the in-

fluence of external effects such as imposed morphogen gradients. These studies have

successfully reconstituted a variety of patterns, including stripes and salt-and-pepper

patterns, and employ a various patterning mechanisms including morphogens, cell sig-

naling, phase separation and mechanical forces (reviewed in [Scholes and Isalan, 2017;

Santos-Moreno and Schaerli, 2018]).

However, studies of dynamic patterns in synthetic systems are scarce, and have mostly

been limited to synchronized oscillations. An early milestone paper in engineering syn-
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thetic patterns shows how coupling cell signaling to cell motility results in a pattern

of concentric rings in an expanding population [Liu et al., 2011]. Another study engi-

neered a quorum-sensing module which is capable of generating synchronized oscilla-

tions [Danino et al., 2010]. Interestingly, this system is also able to produce traveling

waves, and has a gene circuit matching one of the circuits identified in our computa-

tional screen as capable of forming dynamic spatial patterns. However, this wave should

be understood as arising from scale limitations in oscillation synchronization, i.e. the

fact that the oscillations synchronize only locally but cannot globally couple the whole

system [Santos-Moreno and Schaerli, 2018]. In a large enough population, this could

lead to phase waves or kinematic waves, as a result of incomplete synchronization of

oscillations. Thus, despite having the same network topology and generating the same

phenomena, it remains questionable whether our waves arise from a similar mechanism

as in the Danino et al. paper.

A better understanding of dynamic patterns in these systems could be obtained from

more controlled experiments, which would also enable better quantitative comparison

with our modeling results. To start with, one would need more precise control over

the spatial positioning of cells, beyond what can be obtained by plating cells on a petri

dish. This can be achieved through both micropatterning techniques that simulate na-

tive physiological conditions [Théry, 2010], as well as microfluidics setups, which enable

spatial confinement and constant medium refreshment (also discussed in the next sec-

tion). Furthermore, effects of cell proliferation and death should play a minimal role dur-

ing the time course of an experiment, which can be achieved by inhibiting cell division

using standard mitotic inhibitors. Finally, we would need to image the gene expression

dynamics of our system over sufficiently long times to study dynamic patterns.

Furthermore, synthetic engineering could allow for a comprehensive effort to screen a

large number of different quorum sensing circuits and study population-level dynamics

for populations with each of these circuits. This would first require constructing strains

with these different signaling motifs and with tunable genetic interactions and environ-

mental conditions. For instance, interaction strengths between modular components

could be tuned through inducible promotors [Youk & Lim, 2014a]. Subsequently, one

would study the spatial dynamics of these systems using standard microscopy tech-

niques, preferably in combination with the features mentioned in the last paragraph.

As screening a large set of gene circuits and parameters ranges may be unrealistic when

done manually, one could potentially benefit from high-throughput imaging assays [Pep-

perkok & Ellenberg, 2006].

Pattern formation represents only the first step in development, and is typically fol-



6

240 6. DISCUSSION

lowed by differentiation and morphogenesis. Engineering spatial patterns is thus a part

of wider attempt to utilize synthetic biology to understand development (reviewed in

[Davies, 2017; Ebrahimkhani & Ebisuya, 2019]). Whereas we have only dealt with pat-

tern formation in this thesis, future theoretical work could aim to study development

in models integrating pattern formation with differentiation and morphogenesis. The-

oretical approaches combining chemical patterning with mechanical interactions are a

promising step in this direction [Brinkmann et al., 2018; Recho et al., 2019]. Validation

of these theoretical models requires further connection with synthetic biology attempts

to recreate developmental processes in vitro.

6.4.3. NON-BIOLOGICAL SYNTHETIC SYSTEMS

Finally, a third promising avenue is to explore our ideas in non-biological synthetic sys-

tems, most notably those based on DNA nanotechnology. Historically, this field has

been associated with structural DNA nanotechnology – e.g. how to form self-assembling

structures, crystals, DNA origami, and so on. However, in the last two decades or so,

the field of dynamic DNA nanotechnology – how to engineer DNA-based systems that

perform dynamic functions – has flourished and now enables the construction of large

chemical reaction cascades, logic circuits, complex dynamical systems and neural net-

works [Zhang & Seeman, 2011]. Specifically, many of these dynamic functions are based

on toehold-mediated strand displacement, whereby a single stranded input strand reacts

with a multi-stranded DNA complex, thereby displacing another bound single strand,

which gets released from the complex as the output. This mechanism enables the equiv-

alent of a chemical reaction in a controlled, enzyme-free process, and can be scaled up

for the engineering of more complex reaction networks.

In the context of our work, these approaches could be utilized to construct synthetic

communication systems, which could be used as an abiotic model to study communi-

cating biological cells. A major advantage of using such non-living synthetic systems

is that they potentially confer a much higher degree of experimental control. Nega-

tive side-effects such as interactions with endogenous pathways and molecular crowd-

ing would be absent or reduced. Furthermore, such systems allow for easier tuning of

molecular parameters, whereas in vivo these are typically set by the characteristics of

the host cells [Dubuc et al., 2019].

A key challenge in the construction of synthetic communication networks to study spa-

tial patterns is enabling spatial control, which would typically require some form of com-

partmentalization. Various microfluidic technologies exist for studying artificial gene

networks in compartmentalized devices, including flow reactors, microdroplets, lipo-

somes and coacervates [Dubuc et al., 2019]. Other approaches localize DNA circuits on
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a surface, for instance through interactions with DNA origami [Chatterjee et al., 2017].

These technologies enable the study of cell signaling beyond well-mixed systems, or

even reaction-diffusion systems, which are typically in a continuous medium without

(artificial) cells [Loose et al., 2008]. The combination of compartmentalization (e.g. in

liposomes or other protocells) and localization (e.g. through microfluidics) enables the

study of spatial patterns in realistic settings resembling natural systems.

These approaches have yielded synthetic, cell-free systems that reproduce a wide range

of biological phenomena. An early study reconstructed the Drosophila gap gene network

using DNA-coated magnetic beads fixed in an artificial chamber [Isalan et al., 2005]. An-

other study constructed “ring oscillators” consisting of a series of molecules that each

repress the next and exhibit oscillations [Niederholtmeyer et al., 2015]. Synchronization

or entrainment of coupled individual oscillators was studied in a 1D microfluidic device

consisting of DNA compartments [Tayar et al., 2017]. Finally, a recent study reports a

molecular communication platform based on protein-based synthetic protocells, that

can have orthogonal communication channels [Joesaar et al., 2019]. Combined with a

microfluidic protocell trap array and confocal imaging, this setup can be used to study

the spatiotemporal dynamics of dozens of communicating protocells. Specifically, the

authors have demonstrated signal amplification, signaling cascades, negative feedback,

Boolean logic in this system. This work is closest to what we have studied theoretically,

and an extended version of this platform could well be used to test our hypotheses.

To make this connection between theory and experiment, two main challenges need to

be overcome. First, one would need to engineer more complex circuit structures than

the ones currently published. A number of the mentioned studies already feature mul-

tiple signaling components, but these are coupled in a simple fashion (e.g. in a linear

cascade). Realizing the circuits of our model would require integrating multiple commu-

nication channels, feedback loops and logic gates into a single (proto)cell. Furthermore,

current studies focus on particular realizations of cell signaling motifs to demonstrate

proof of concepts, but a more comprehensive picture is lacking. Engineering large li-

braries of different circuits with tunable properties and studying their spatiotemporal

dynamics would be ideal in this case, but may be unrealistic at the present moment.

However, if successful, such an approach would enable a more comprehensive under-

standing of the versatility of multicellular signaling systems.

6.5. DIRECTIONS FOR FUTURE RESEARCH
Given the previously stated conclusions and experimental relevance, what are some con-

crete steps to take next, if we were to continue with this project? In this final section,
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we discuss possible directions for future research. The aims of these suggested projects

are manifold. To begin with, they serve to directly test the current theoretical frame-

work and improve upon it if necessarily (points 1-2 below). This direction requires direct

collaboration with experimentalists, but also complementary modeling efforts. These

could in return guide further development of our modeling framework to incorporate

a wider range of biologically realistic settings. Secondly, we should aim to extrapolate

our framework and findings to more general settings, to show the wider applicability of

our work (points 3-5 below). This involves comparing our findings to related modeling

approaches (point 3), as well as deriving generalized mathematical descriptions beyond

the special cases we considered (point 4), which includes extrapolating specific results

to more general settings (point 5). Thirdly, we should explore specific features of our

models in more detail, as they are currently incompletely understood (points 1, 5 and 6).

This requires the development of new theoretical tools and concepts. Finally, we should

aim to place our results in the wider context of literature from a variety of fields (points

7).

1. Expand current modeling efforts to include more complex settings

and by incorporating additional features relating to real biological

systems (as discussed earlier)

The first point relates to the biological realism of our models, as discussed in Section 6.3

earlier in this chapter. Priorities in this direction should include modeling more com-

plex networks, multiple cell types and cell-cell heterogeneity. Expanding our framework

to include more complex networks is straightforward, but note that the number of dis-

tinct networks grows rapidly with the number of nodes, i.e. the number of molecule

types. Hence extending to more molecules requires not only considerably more compu-

tational power, as well as automated procedures for analyzing large sets of simulations

(for instance by defining a “wave score”, as discussed under point 6). Secondly, real tis-

sues are often composed of multiple cell types, each of which may have a different cellu-

lar dialogue and molecular parameters. A formal extension to multiple cell types for cells

with single signaling molecule is given in the supplementary section of [Olimpio et al.,

2018] (omitted from this thesis as it is work by E. Olimpio), but the full range of phenom-

ena remains to be explored. Thirdly, populations of cells are never fully homogeneous,

even when they are genetically identical [Ackermann, 2015]. This calls for models to take

into account cell-to-cell variability. Such variability could be introduced simply by tak-

ing random molecular parameters for each cell, preferably drawn from experimentally

characterized distributions. Related to this point, we should also explore more realistic

descriptions of stochasticity. Rather than taking a single phenomenological parameter,
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we could try to derive more exact descriptions of noise arising directly from biophysi-

cal sources, such as fundamental limits in sensing accuracy [Berg & Purcell, 1974] and

stochastic gene expression. Interestingly, in reaction-diffusion systems the addition of

noise produces so-called stochastic Turing patterns [Biancalani et al., 2010], which are

similar to normal Turing patterns and have the same wavelengths, but have a wider pa-

rameter space under which they can self-organize. They have since then been observed

experimentally in a synthetic bacterial population [Karig et al., 2018]. In our model, we

have so far observed noise-induced ordering in both static pattern formation (Chapter

4 – Section 4.2.7) and dynamic pattern formation (Chapter 5 – Figures 5.6D and S5.5A),

whereby a moderate amount of noise increases the probability of generating spatially

ordered configurations. We should further explore these results by deriving more exact

results for realistic noise descriptions, similar to what has been done to study stochastic

Turing patterns [Biancalani et al., 2010].

2. Relate our model results to experiments (as discussed earlier)

We have discussed in detail how various experimental approaches can be utilized to as-

sess the conditions under which our results hold. Ideally, we would like our findings to be

verified in all three classes of experimental systems proposed above. However, directly

testing our ideas in any of these systems poses technical challenges which would need to

be overcome. For developmental systems, our aim here would be to simply identify more

biological systems exhibiting dynamic phenomena (e.g. traveling waves) that qualita-

tively match our model findings. For instance, several well-known systems are still mod-

eled using phenomenological models such as the FitzHugh-Nagumo model [Sgro et al.,

2015; Hubaud et al., 2017]. Instead, we could construct bottom-up multiscale models

from known genetic interactions to try to generate similar phenomena. Secondly, syn-

thetic systems – both living and non-living ones – offer better prospects for running con-

trolled experimental studies that directly test our findings. Arguably the best option here

would be to construct a large library of strains with different quorum-sensing modules

and screen their population-level dynamics, as mentioned earlier. Finally, non-living

synthetic systems could potentially achieve the highest degree of control, but efforts in

this direction are currently limited by technical challenges in engineering complex sig-

naling modules.

3. Perform network enumeration studies of pattern formation in con-

tinuous systems (e.g. reaction-diffusion systems)

A logical question to ask about the cellular automaton modeling approach we took, is

how our results compare to continuous systems, such as reaction-diffusion systems.

This is important to address, because we would like to be able to tell apart persistent
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features from our data from artefacts arising from our modeling choices. In fact, dynam-

ical systems are known to show different behavior when modeling choices are slightly

varied. A well-known example in this context is the logistic map, which shows all hall-

marks of chaotic in its discrete formulation, while its continuous counterpart has an un-

remarkable single stable fixed point [Strogatz, 1994]. In this example, changing time in

the model from a continuous variable to a discrete one has drastic consequences to the

system’s dynamics. For our model, we have seen that changing cells states from dis-

crete (as arising from a step function response) to continuous (as arising from a sig-

moidal response function) may also drastically change our results. For instance, at a

low enough response function steepness (Hill coefficient), the system always becomes

spatially homogeneous, under the same set of parameters that would give dynamic spa-

tial patterns at infinite Hill coefficient (Chapter 5 – Figures S5.5A–B). In a similar vein,

we could ask whether going from discrete to continuous time and space have any im-

pact on our findings. However, it is not straightforward how this operation would work

in practice, because going from discrete to continuous variables necessarily introduces

additional variables (e.g. a response time parameter to characterize how quickly cells

respond to signals).

Another angle to consider is to perform a network enumeration study, similar to ours,

to find traveling waves in reaction-diffusion systems. As mentioned, large-scale network

screenings for Turing patterns in reaction-diffusion systems do exist, but these focus on

static patterns, which can be easily studied by looking for instabilities in the real part of

the spectrum [Murray, 2003], which does not even require performing numerical sim-

ulations. Potentially such studies could be extended to include oscillations, by looking

at the imaginary part of the spectrum. However, it is not clear whether we can screen

reaction-diffusion systems for traveling waves in a similar simulation-free manner. Ef-

forts along these lines may potentially benefit from the large body of literature on waves

in continuous media [Van Saarloos, 2003].

4. Develop analytic methods that are applicable to a wider range of

modeled cases (e.g. gene circuits with repression, multiple genes)

A significant part of this thesis deals with developing analytic methods to predict the dy-

namics and steady states of the system, to identify quantitatively different model behav-

iors or phases and to find conditions for certain behaviors (e.g. traveling wave propaga-

tion). While we have succeeded in finding a number of analytic treatments, the current

efforts should be expanded to building more general frameworks that are applicable to

a wider range of situations.

The “pseudo-energy landscape” is such an analytic method that predicts the system’s
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dynamics without simulations. However, in its current form it only applies to cells se-

creting a single molecule with a positive feedback loop. Furthermore, the equation of

motion – although it works well – is phenomenological and not rigorously derived from

the microscopic rules of the cellular automaton. One direct challenge in extending our

current framework to more complex situations is that it is not clear how dynamic pat-

terns should be represented on this “pseudo-energy” landscape. This is true even for

oscillations arising from a single negative feedback loop, which would repeatedly cycle

between different positions on the energy landscape. However, the self-organization of

complex patterns does give a sense of directionality in time (i.e. simulations are clearly

different when played backwards). Thus, finding a representation of this “arrow of time”

in the self-organization dynamics remains an open challenge (to be discussed further in

point 6).

An alternative approach is to directly derive macroscopic equations of motion from our

cellular automaton model. This was previously attempted in [Olimpio, 2016], which

demonstrated a method to derive equations for the dynamics of the macrostate (p, I)

as a Markovian stochastic process. This relied on a mean-field approach, where one

estimates the sensed concentrations of ON and OFF cells as population averages that

depend on the degree of spatial order. The results obtain in this way matches well with

simulations in certain cases, but showed wild fluctuations and large deviations in other

cases, especially in the spatial index I. As such, we opted for the phenomenological equa-

tion of motion derived from the “pseudo-energy” landscape instead, which despite not

being rigorously derived, qualitatively appears to do a better job in reproducing macro-

scopic dynamics.

Similarly, we have attempted to use a similar approach to derive macroscopic equations

for a system with two molecules. This yielded a set of self-consistent equations for the

fractions of cells in each of the four states (0,0), (1,0), (0,1) and (1,1). These mean-field

derived equations qualitatively reproduce the dynamics in limiting cases where the dy-

namics becomes trivial, such as when all cells acquire the same gene expression state

over time. However, it is unable to reproduce any of the more complex phenomena such

as long chaotic fluctuations, or formation of dynamic spatial patterns. For this reason,

the detailed results of this approach are omitted from this thesis.

Another possibility would be to derive an analytic description of our system as a continuous-

space, continuous-time system (e.g. a set of partial differential equations). This would

circumvent the need to introduce macroscopic variables (such as p and I ) and would

allow potentially easier analysis of steady state solutions. For a particular class of cellu-

lar automata, namely lattice gas cellular automata, there are rigorous methods to derive
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partial differential equations from underlying microscopic rules [Deutsch & Dormann,

2005]. This construction relies on a (different type of) mean-field approximation, where

one assumes that probability distributions at individual lattice sites are independent.

Whether these or other methods can be generalized or adapted to our model is an open

question.

5. Further develop analytic methods for studying dynamic patterns

in discrete systems such as the multicellular model considered in

this thesis

In addition to developing general analytic frameworks for representing the system’s dy-

namics, we should also aim to extend analytic methods that target specific features of

our models. For instance, we would ideally like to extend the scope of our traveling wave

propagation conditions to different types of dynamic patterns. The conditions only ap-

ply to specific waves composed of single bands of cells, but from examples we know that

waves can take a variety of morphologies (Chapter 5 – Figure 5.2). So, it would be use-

ful to extend these conditions to include different “wave morphologies”. As a second

example, we indirectly infer the presence of waves in simulations from features such as

macroscopic variables that do not change over time and a periodicity of the pattern that

is a multiple of the grid size (see Chapter 5 – Section S5.4.2). While we have verified that

this approach works by testing it on example simulations, it is by no means a complete

approach to extract all potentially interesting dynamic spatial patterns in the model.

Therefore, it would be useful to have more analytic methods for analyzing complex dy-

namic spatial patterns, which are not limited to specific pattern morphologies (e.g. straight

traveling waves). Just as linear stability analysis is a powerful standard method to look

for Turing instabilities [Murray, 2003], having a universal tool that is employable for a

range of discrete models in this context would be very useful. It would allow us to iden-

tify interesting patterns, and allow us to screen larger sets of networks, both without

examining simulations by eye. Highly formalized results on traveling waves on 2D lat-

tices do exist in the mathematics literature, but have not found their way into biology yet

[Hupkes & Van Vleck, 2013]. Furthermore, in optics discrete solitons (waves with fixed

shapes traveling at constant velocity) have been studied thoroughly both theoretically

and experimentally on photonic lattices [Lederer et al., 2008]. Relating our results to the

mathematics and physics literature on waves on 2D lattices may reveal useful methods

for studying the dynamic spatial patterns that we observed.

6. Characterize and predict trajectories of complex patterns from a

dynamical systems perspective
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Another aspect that is insufficiently understood is the self-organization dynamics of

complex patterns such as dynamical spatial patterns. Typical studies of pattern for-

mation focus on the steady state patterns, while often neglecting the dynamics of self-

organization. This a natural result of the linear stability analysis done for reaction-diffusion

systems, which considers only long-time steady states and neglects dynamics [Murray,

2003]. In our work, we have aimed to extract general characteristics of the self-organization

process from batch simulations (Chapter 5 – SectionS5.4.2). However, our understand-

ing is currently at the stage of characterization, and we have no tools available to extract

more rigorous and potentially predictive results about the self-organization dynamics.

Specifically, we would like to have tools to predict and understand a number of features

we observed. First, recall that formation times for traveling waves are roughly exponen-

tially distributed (Chapter 5 – Figure S5.8A). One can then speculate that this may arise

from an underlying Markov process – specifically, a Bernoulli process where the chance

of forming a wave is equal at every time step. However, whether one can construct a

simplified model that reproduces this feature and also gives insight into the mechanism

of wave formation is unknown. Second, the long transient chaotic phases preceding for-

mation of a steady state pattern (Chapter 5 – Figure 5.5) are indistinguishable amongst

different attractor states. This means that whether the final pattern is a wave or a fixed

point without spatial structure, the transient dynamics look qualitatively similar. But

could there be hidden determinants, indiscernible by the human eye, that contain in-

formation about the long-time dynamics (e.g. whether a wave forms at the end of the

simulation or not)? Black-box methods from machine learning could potentially offer

answers [Mehta et al., 2019].

Perhaps we should take a broader perspective, and we ask questions about the system

from a dynamical systems perspective [Strogatz, 1994]. How many attractors are there

in the system? How are these different attractors organized in phase space? What is

the stability of each of the attractors? What is the attractor structure of a dynamic spa-

tial pattern? Given the complexity of the transient dynamics before the formation of a

steady state dynamic spatial pattern, it is not unreasonable to assume that the attractor

to these states could have a highly non-trivial structure. Could it be a strange attractor,

with a fractal structure? Furthermore, we know from simulations that the waves have

limited stability. While waves can sometimes easily recover from isolated perturbations

on single cells, perturbing multiple cells simultaneously often leads wave breakdown

[Grundel, 2019]. However, without tools to analytically determine the steady states or to

calculate the stability of attractors it is hard to make any rigorous statements about these

points.
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7. Relate our results to the wider literature on complex systems, com-

putation and thermodynamics

The phenomena we observed in our models show hallmarks of complex systems; non-

linearity, feedback, emergence, self-organization and openness. The underlying model

is inherently nonlinear through the imposed response function (either step-like or sig-

moidal), which creates a feedback loop – every cell senses and responds its environment

by adjusting secretion rates. We observe the emergence of non-trivial patterns, which are

self-organized from random initial conditions. Furthermore, we note that our system is

open in the sense that it requires a flow of energy from the environment to be sustained.

While this is not explicitly modeled, cells require a constant energy source to stay alive

and express genes. Altogether, this implies that we should aim to place our work in the

wider context of studies on complex systems in biology [Kaneko, 2006].

On the other hand, there are also traits which are often associated with complex systems

that are not present in our system. First, the network structure of our model is trivial:

all cells are in principle coupled to each other, making our system a fully connected net-

work. However, as mentioned before, in real tissues systems of interacting cells may form

complex networks with nontrivial topologies [Gosak et al., 2018]. Second, our system has

limited adaptability, because it has no real memory. The cells are adaptive in the sense

that they have the capacity to respond to their environment. However, cellular automata

are by definition Markovian – the next state determines only on the present state and not

on its history. Expanding our model to consider how adjusting these two additional fea-

tures – network structure and adaptability, which requires memory – is another logical

extension of our work.

Another interesting perspective to consider is whether we can treat a collection of inter-

acting cells as an abstract computational machine. Cellular automata are known to be

capable of performing computations by simulating abstract computational machine. It

has been suggested that this ability arises at the edge between an ordered phase and a

chaotic phase, although these claims remain controversial [Langton, 1990; Mitchell et

al., 1993]. Furthermore, the classic Game of Life has been shown to be a universal Turing

machine, capable of universal computation [Berlekamp et al., 2004; Rendell, 2011]. Like-

wise, we may ask whether any computational tasks can be performed using our setup of

interacting cells. Since we can produce traveling waves and other dynamic spatial pat-

terns, we may wonder whether there is any way of combining these patterns to perform

basic logic operations, by setting up colliding patterns that interact in required manners.

Finally, it would be interesting to relate our work to non-equilibrium statistical physics

and thermodynamics. Several decades ago, researchers showed that systems far from
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thermodynamic equilibrium can show remarkable examples of self-organization, such

as hexagonal patterns when a fluid is heated beyond an instability threshold in convec-

tion cells (known as Bénard cells) [Prigogine & Stengers, 1984]. These systems, known as

dissipative structures, follow thermodynamic principles different from equilibrium sys-

tems, and even systems close to equilibrium, for which general principles such as min-

imum entropy production and Onsager’s reciprocal relations can still be obtained [Pri-

gogine, 1977]. These findings are highly relevant to living systems, as they are inherently

out of equilibrium [Phillips, 2015]. Also, both energy dissipation and self-organization

are ubiquitous in biology. Recent work has proposed novel thermodynamic frameworks

for processes in living systems such as self-replication [England, 2013], adaptation [Pe-

runov et al., 2016] and self-assembly [England, 2015].

Relating our system to thermodynamics would allow us to address questions such as

whether there are physical principles constraining self-organization of spatial patterns,

or even development in general? Furthermore, are there extremal principles similar to

minimum entropy production [Lebon et al., 2008], that can explain the self-organization

phenomena observed in our system? While our “pseudo-energy landscape” is an explo-

ration that is inspired by such approaches, it is not a thermodynamic construction and

does not rely on any exact correspondence to any thermodynamic system. One way to

proceed, therefore, is to try to find such an exact correspondence. For instance, it has

been established that reaction-diffusion systems, when modeled as probabilistic cellu-

lar automata, can in certain cases be mapped onto Ising spin models [Weimar and Boon,

1994; Merle et al., 2019]. These studies show that it is possible to make surprising new

connections between physics and biology. Ultimately, searching for such unexpected

links and hidden connections will bring us closer to a physics-type understanding of liv-

ing systems.
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